Metamath Proof Explorer


Theorem bcthlem2

Description: Lemma for bcth . The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014)

Ref Expression
Hypotheses bcth.2 J=MetOpenD
bcthlem.4 φDCMetX
bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
bcthlem.6 φM:ClsdJ
bcthlem.7 φR+
bcthlem.8 φCX
bcthlem.9 φg:X×+
bcthlem.10 φg1=CR
bcthlem.11 φkgk+1kFgk
Assertion bcthlem2 φnballDgn+1ballDgn

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 bcthlem.4 φDCMetX
3 bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
4 bcthlem.6 φM:ClsdJ
5 bcthlem.7 φR+
6 bcthlem.8 φCX
7 bcthlem.9 φg:X×+
8 bcthlem.10 φg1=CR
9 bcthlem.11 φkgk+1kFgk
10 fvoveq1 k=ngk+1=gn+1
11 id k=nk=n
12 fveq2 k=ngk=gn
13 11 12 oveq12d k=nkFgk=nFgn
14 10 13 eleq12d k=ngk+1kFgkgn+1nFgn
15 14 rspccva kgk+1kFgkngn+1nFgn
16 9 15 sylan φngn+1nFgn
17 7 ffvelcdmda φngnX×+
18 1 2 3 bcthlem1 φngnX×+gn+1nFgngn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMn
19 18 expr φngnX×+gn+1nFgngn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMn
20 17 19 mpd φngn+1nFgngn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMn
21 16 20 mpbid φngn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMn
22 cmetmet DCMetXDMetX
23 2 22 syl φDMetX
24 metxmet DMetXD∞MetX
25 23 24 syl φD∞MetX
26 1 mopntop D∞MetXJTop
27 25 26 syl φJTop
28 xp1st gn+1X×+1stgn+1X
29 xp2nd gn+1X×+2ndgn+1+
30 29 rpxrd gn+1X×+2ndgn+1*
31 28 30 jca gn+1X×+1stgn+1X2ndgn+1*
32 blssm D∞MetX1stgn+1X2ndgn+1*1stgn+1ballD2ndgn+1X
33 32 3expb D∞MetX1stgn+1X2ndgn+1*1stgn+1ballD2ndgn+1X
34 25 31 33 syl2an φgn+1X×+1stgn+1ballD2ndgn+1X
35 df-ov 1stgn+1ballD2ndgn+1=ballD1stgn+12ndgn+1
36 1st2nd2 gn+1X×+gn+1=1stgn+12ndgn+1
37 36 fveq2d gn+1X×+ballDgn+1=ballD1stgn+12ndgn+1
38 35 37 eqtr4id gn+1X×+1stgn+1ballD2ndgn+1=ballDgn+1
39 38 adantl φgn+1X×+1stgn+1ballD2ndgn+1=ballDgn+1
40 1 mopnuni D∞MetXX=J
41 25 40 syl φX=J
42 41 adantr φgn+1X×+X=J
43 34 39 42 3sstr3d φgn+1X×+ballDgn+1J
44 eqid J=J
45 44 sscls JTopballDgn+1JballDgn+1clsJballDgn+1
46 27 43 45 syl2an2r φgn+1X×+ballDgn+1clsJballDgn+1
47 difss2 clsJballDgn+1ballDgnMnclsJballDgn+1ballDgn
48 sstr2 ballDgn+1clsJballDgn+1clsJballDgn+1ballDgnballDgn+1ballDgn
49 46 47 48 syl2im φgn+1X×+clsJballDgn+1ballDgnMnballDgn+1ballDgn
50 49 a1d φgn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMnballDgn+1ballDgn
51 50 ex φgn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMnballDgn+1ballDgn
52 51 3impd φgn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMnballDgn+1ballDgn
53 52 adantr φngn+1X×+2ndgn+1<1nclsJballDgn+1ballDgnMnballDgn+1ballDgn
54 21 53 mpd φnballDgn+1ballDgn
55 54 ralrimiva φnballDgn+1ballDgn