Metamath Proof Explorer


Theorem bcthlem2

Description: Lemma for bcth . The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014)

Ref Expression
Hypotheses bcth.2 J = MetOpen D
bcthlem.4 φ D CMet X
bcthlem.5 F = k , z X × + x r | x X r + r < 1 k cls J x ball D r ball D z M k
bcthlem.6 φ M : Clsd J
bcthlem.7 φ R +
bcthlem.8 φ C X
bcthlem.9 φ g : X × +
bcthlem.10 φ g 1 = C R
bcthlem.11 φ k g k + 1 k F g k
Assertion bcthlem2 φ n ball D g n + 1 ball D g n

Proof

Step Hyp Ref Expression
1 bcth.2 J = MetOpen D
2 bcthlem.4 φ D CMet X
3 bcthlem.5 F = k , z X × + x r | x X r + r < 1 k cls J x ball D r ball D z M k
4 bcthlem.6 φ M : Clsd J
5 bcthlem.7 φ R +
6 bcthlem.8 φ C X
7 bcthlem.9 φ g : X × +
8 bcthlem.10 φ g 1 = C R
9 bcthlem.11 φ k g k + 1 k F g k
10 fvoveq1 k = n g k + 1 = g n + 1
11 id k = n k = n
12 fveq2 k = n g k = g n
13 11 12 oveq12d k = n k F g k = n F g n
14 10 13 eleq12d k = n g k + 1 k F g k g n + 1 n F g n
15 14 rspccva k g k + 1 k F g k n g n + 1 n F g n
16 9 15 sylan φ n g n + 1 n F g n
17 7 ffvelrnda φ n g n X × +
18 1 2 3 bcthlem1 φ n g n X × + g n + 1 n F g n g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n
19 18 expr φ n g n X × + g n + 1 n F g n g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n
20 17 19 mpd φ n g n + 1 n F g n g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n
21 16 20 mpbid φ n g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n
22 cmetmet D CMet X D Met X
23 2 22 syl φ D Met X
24 metxmet D Met X D ∞Met X
25 23 24 syl φ D ∞Met X
26 1 mopntop D ∞Met X J Top
27 25 26 syl φ J Top
28 xp1st g n + 1 X × + 1 st g n + 1 X
29 xp2nd g n + 1 X × + 2 nd g n + 1 +
30 29 rpxrd g n + 1 X × + 2 nd g n + 1 *
31 28 30 jca g n + 1 X × + 1 st g n + 1 X 2 nd g n + 1 *
32 blssm D ∞Met X 1 st g n + 1 X 2 nd g n + 1 * 1 st g n + 1 ball D 2 nd g n + 1 X
33 32 3expb D ∞Met X 1 st g n + 1 X 2 nd g n + 1 * 1 st g n + 1 ball D 2 nd g n + 1 X
34 25 31 33 syl2an φ g n + 1 X × + 1 st g n + 1 ball D 2 nd g n + 1 X
35 df-ov 1 st g n + 1 ball D 2 nd g n + 1 = ball D 1 st g n + 1 2 nd g n + 1
36 1st2nd2 g n + 1 X × + g n + 1 = 1 st g n + 1 2 nd g n + 1
37 36 fveq2d g n + 1 X × + ball D g n + 1 = ball D 1 st g n + 1 2 nd g n + 1
38 35 37 eqtr4id g n + 1 X × + 1 st g n + 1 ball D 2 nd g n + 1 = ball D g n + 1
39 38 adantl φ g n + 1 X × + 1 st g n + 1 ball D 2 nd g n + 1 = ball D g n + 1
40 1 mopnuni D ∞Met X X = J
41 25 40 syl φ X = J
42 41 adantr φ g n + 1 X × + X = J
43 34 39 42 3sstr3d φ g n + 1 X × + ball D g n + 1 J
44 eqid J = J
45 44 sscls J Top ball D g n + 1 J ball D g n + 1 cls J ball D g n + 1
46 27 43 45 syl2an2r φ g n + 1 X × + ball D g n + 1 cls J ball D g n + 1
47 difss2 cls J ball D g n + 1 ball D g n M n cls J ball D g n + 1 ball D g n
48 sstr2 ball D g n + 1 cls J ball D g n + 1 cls J ball D g n + 1 ball D g n ball D g n + 1 ball D g n
49 46 47 48 syl2im φ g n + 1 X × + cls J ball D g n + 1 ball D g n M n ball D g n + 1 ball D g n
50 49 a1d φ g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n ball D g n + 1 ball D g n
51 50 ex φ g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n ball D g n + 1 ball D g n
52 51 3impd φ g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n ball D g n + 1 ball D g n
53 52 adantr φ n g n + 1 X × + 2 nd g n + 1 < 1 n cls J ball D g n + 1 ball D g n M n ball D g n + 1 ball D g n
54 21 53 mpd φ n ball D g n + 1 ball D g n
55 54 ralrimiva φ n ball D g n + 1 ball D g n