| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | bcthlem.4 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | bcthlem.5 |  |-  F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) | 
						
							| 4 |  | opabssxp |  |-  { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } C_ ( X X. RR+ ) | 
						
							| 5 |  | elfvdm |  |-  ( D e. ( CMet ` X ) -> X e. dom CMet ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> X e. dom CMet ) | 
						
							| 7 |  | reex |  |-  RR e. _V | 
						
							| 8 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 9 | 7 8 | ssexi |  |-  RR+ e. _V | 
						
							| 10 |  | xpexg |  |-  ( ( X e. dom CMet /\ RR+ e. _V ) -> ( X X. RR+ ) e. _V ) | 
						
							| 11 | 6 9 10 | sylancl |  |-  ( ph -> ( X X. RR+ ) e. _V ) | 
						
							| 12 |  | ssexg |  |-  ( ( { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } C_ ( X X. RR+ ) /\ ( X X. RR+ ) e. _V ) -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) | 
						
							| 13 | 4 11 12 | sylancr |  |-  ( ph -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) | 
						
							| 14 |  | oveq2 |  |-  ( k = A -> ( 1 / k ) = ( 1 / A ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( k = A -> ( r < ( 1 / k ) <-> r < ( 1 / A ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( k = A -> ( M ` k ) = ( M ` A ) ) | 
						
							| 17 | 16 | difeq2d |  |-  ( k = A -> ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) = ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) | 
						
							| 18 | 17 | sseq2d |  |-  ( k = A -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) <-> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d |  |-  ( k = A -> ( ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) <-> ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( k = A -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) <-> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 21 | 20 | opabbidv |  |-  ( k = A -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) } ) | 
						
							| 22 |  | fveq2 |  |-  ( z = B -> ( ( ball ` D ) ` z ) = ( ( ball ` D ) ` B ) ) | 
						
							| 23 | 22 | difeq1d |  |-  ( z = B -> ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) = ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) | 
						
							| 24 | 23 | sseq2d |  |-  ( z = B -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) | 
						
							| 25 | 24 | anbi2d |  |-  ( z = B -> ( ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) <-> ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 26 | 25 | anbi2d |  |-  ( z = B -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) <-> ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 27 | 26 | opabbidv |  |-  ( z = B -> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` A ) ) ) ) } = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) | 
						
							| 28 | 21 27 3 | ovmpog |  |-  ( ( A e. NN /\ B e. ( X X. RR+ ) /\ { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } e. _V ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) | 
						
							| 29 | 13 28 | syl3an3 |  |-  ( ( A e. NN /\ B e. ( X X. RR+ ) /\ ph ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) | 
						
							| 30 | 29 | 3expa |  |-  ( ( ( A e. NN /\ B e. ( X X. RR+ ) ) /\ ph ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) | 
						
							| 31 | 30 | ancoms |  |-  ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( A F B ) = { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) | 
						
							| 32 | 31 | eleq2d |  |-  ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( C e. ( A F B ) <-> C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) ) | 
						
							| 33 | 4 | sseli |  |-  ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } -> C e. ( X X. RR+ ) ) | 
						
							| 34 |  | simp1 |  |-  ( ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) -> C e. ( X X. RR+ ) ) | 
						
							| 35 |  | 1st2nd2 |  |-  ( C e. ( X X. RR+ ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) | 
						
							| 36 | 35 | eleq1d |  |-  ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> <. ( 1st ` C ) , ( 2nd ` C ) >. e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } ) ) | 
						
							| 37 |  | fvex |  |-  ( 1st ` C ) e. _V | 
						
							| 38 |  | fvex |  |-  ( 2nd ` C ) e. _V | 
						
							| 39 |  | eleq1 |  |-  ( x = ( 1st ` C ) -> ( x e. X <-> ( 1st ` C ) e. X ) ) | 
						
							| 40 |  | eleq1 |  |-  ( r = ( 2nd ` C ) -> ( r e. RR+ <-> ( 2nd ` C ) e. RR+ ) ) | 
						
							| 41 | 39 40 | bi2anan9 |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( x e. X /\ r e. RR+ ) <-> ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> r = ( 2nd ` C ) ) | 
						
							| 43 | 42 | breq1d |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( r < ( 1 / A ) <-> ( 2nd ` C ) < ( 1 / A ) ) ) | 
						
							| 44 |  | oveq12 |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( x ( ball ` D ) r ) = ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) = ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) ) | 
						
							| 46 | 45 | sseq1d |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) | 
						
							| 47 | 43 46 | anbi12d |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 48 | 41 47 | anbi12d |  |-  ( ( x = ( 1st ` C ) /\ r = ( 2nd ` C ) ) -> ( ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 49 | 37 38 48 | opelopaba |  |-  ( <. ( 1st ` C ) , ( 2nd ` C ) >. e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 50 | 36 49 | bitrdi |  |-  ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 51 | 35 | eleq1d |  |-  ( C e. ( X X. RR+ ) -> ( C e. ( X X. RR+ ) <-> <. ( 1st ` C ) , ( 2nd ` C ) >. e. ( X X. RR+ ) ) ) | 
						
							| 52 |  | opelxp |  |-  ( <. ( 1st ` C ) , ( 2nd ` C ) >. e. ( X X. RR+ ) <-> ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) ) | 
						
							| 53 | 51 52 | bitr2di |  |-  ( C e. ( X X. RR+ ) -> ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) <-> C e. ( X X. RR+ ) ) ) | 
						
							| 54 |  | df-ov |  |-  ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) = ( ( ball ` D ) ` <. ( 1st ` C ) , ( 2nd ` C ) >. ) | 
						
							| 55 | 35 | fveq2d |  |-  ( C e. ( X X. RR+ ) -> ( ( ball ` D ) ` C ) = ( ( ball ` D ) ` <. ( 1st ` C ) , ( 2nd ` C ) >. ) ) | 
						
							| 56 | 54 55 | eqtr4id |  |-  ( C e. ( X X. RR+ ) -> ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) = ( ( ball ` D ) ` C ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( C e. ( X X. RR+ ) -> ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) = ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) ) | 
						
							| 58 | 57 | sseq1d |  |-  ( C e. ( X X. RR+ ) -> ( ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) <-> ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) | 
						
							| 59 | 58 | anbi2d |  |-  ( C e. ( X X. RR+ ) -> ( ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 60 | 53 59 | anbi12d |  |-  ( C e. ( X X. RR+ ) -> ( ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 61 |  | 3anass |  |-  ( ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 62 | 60 61 | bitr4di |  |-  ( C e. ( X X. RR+ ) -> ( ( ( ( 1st ` C ) e. X /\ ( 2nd ` C ) e. RR+ ) /\ ( ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( 1st ` C ) ( ball ` D ) ( 2nd ` C ) ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 63 | 50 62 | bitrd |  |-  ( C e. ( X X. RR+ ) -> ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) | 
						
							| 64 | 33 34 63 | pm5.21nii |  |-  ( C e. { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / A ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) } <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) | 
						
							| 65 | 32 64 | bitrdi |  |-  ( ( ph /\ ( A e. NN /\ B e. ( X X. RR+ ) ) ) -> ( C e. ( A F B ) <-> ( C e. ( X X. RR+ ) /\ ( 2nd ` C ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` C ) ) C_ ( ( ( ball ` D ) ` B ) \ ( M ` A ) ) ) ) ) |