| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | bcthlem.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 3 |  | bcthlem.5 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ ,  𝑧  ∈  ( 𝑋  ×  ℝ+ )  ↦  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | 
						
							| 4 |  | opabssxp | ⊢ { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ⊆  ( 𝑋  ×  ℝ+ ) | 
						
							| 5 |  | elfvdm | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝑋  ∈  dom  CMet ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝑋  ∈  dom  CMet ) | 
						
							| 7 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 8 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 9 | 7 8 | ssexi | ⊢ ℝ+  ∈  V | 
						
							| 10 |  | xpexg | ⊢ ( ( 𝑋  ∈  dom  CMet  ∧  ℝ+  ∈  V )  →  ( 𝑋  ×  ℝ+ )  ∈  V ) | 
						
							| 11 | 6 9 10 | sylancl | ⊢ ( 𝜑  →  ( 𝑋  ×  ℝ+ )  ∈  V ) | 
						
							| 12 |  | ssexg | ⊢ ( ( { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ⊆  ( 𝑋  ×  ℝ+ )  ∧  ( 𝑋  ×  ℝ+ )  ∈  V )  →  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ∈  V ) | 
						
							| 13 | 4 11 12 | sylancr | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ∈  V ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑘  =  𝐴  →  ( 1  /  𝑘 )  =  ( 1  /  𝐴 ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑘  =  𝐴  →  ( 𝑟  <  ( 1  /  𝑘 )  ↔  𝑟  <  ( 1  /  𝐴 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑘  =  𝐴  →  ( 𝑀 ‘ 𝑘 )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 17 | 16 | difeq2d | ⊢ ( 𝑘  =  𝐴  →  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) )  =  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | sseq2d | ⊢ ( 𝑘  =  𝐴  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑘  =  𝐴  →  ( ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) )  ↔  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑘  =  𝐴  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 21 | 20 | opabbidv | ⊢ ( 𝑘  =  𝐴  →  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) }  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑧  =  𝐵  →  ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  =  ( ( ball ‘ 𝐷 ) ‘ 𝐵 ) ) | 
						
							| 23 | 22 | difeq1d | ⊢ ( 𝑧  =  𝐵  →  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) )  =  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | sseq2d | ⊢ ( 𝑧  =  𝐵  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) )  ↔  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( 𝑧  =  𝐵  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 27 | 26 | opabbidv | ⊢ ( 𝑧  =  𝐵  →  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 28 | 21 27 3 | ovmpog | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ )  ∧  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ∈  V )  →  ( 𝐴 𝐹 𝐵 )  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 29 | 13 28 | syl3an3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ )  ∧  𝜑 )  →  ( 𝐴 𝐹 𝐵 )  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 30 | 29 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ ) )  ∧  𝜑 )  →  ( 𝐴 𝐹 𝐵 )  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 31 | 30 | ancoms | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ ) ) )  →  ( 𝐴 𝐹 𝐵 )  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) | 
						
							| 32 | 31 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ ) ) )  →  ( 𝐶  ∈  ( 𝐴 𝐹 𝐵 )  ↔  𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) ) | 
						
							| 33 | 4 | sseli | ⊢ ( 𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  →  𝐶  ∈  ( 𝑋  ×  ℝ+ ) ) | 
						
							| 34 |  | simp1 | ⊢ ( ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) )  →  𝐶  ∈  ( 𝑋  ×  ℝ+ ) ) | 
						
							| 35 |  | 1st2nd2 | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  𝐶  =  〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉 ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( 𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ↔  〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) } ) ) | 
						
							| 37 |  | fvex | ⊢ ( 1st  ‘ 𝐶 )  ∈  V | 
						
							| 38 |  | fvex | ⊢ ( 2nd  ‘ 𝐶 )  ∈  V | 
						
							| 39 |  | eleq1 | ⊢ ( 𝑥  =  ( 1st  ‘ 𝐶 )  →  ( 𝑥  ∈  𝑋  ↔  ( 1st  ‘ 𝐶 )  ∈  𝑋 ) ) | 
						
							| 40 |  | eleq1 | ⊢ ( 𝑟  =  ( 2nd  ‘ 𝐶 )  →  ( 𝑟  ∈  ℝ+  ↔  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ ) ) | 
						
							| 41 | 39 40 | bi2anan9 | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ↔  ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  𝑟  =  ( 2nd  ‘ 𝐶 ) ) | 
						
							| 43 | 42 | breq1d | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( 𝑟  <  ( 1  /  𝐴 )  ↔  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 ) ) ) | 
						
							| 44 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  =  ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  =  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) ) ) | 
						
							| 46 | 45 | sseq1d | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 47 | 43 46 | anbi12d | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) )  ↔  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 48 | 41 47 | anbi12d | ⊢ ( ( 𝑥  =  ( 1st  ‘ 𝐶 )  ∧  𝑟  =  ( 2nd  ‘ 𝐶 ) )  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) )  ↔  ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 49 | 37 38 48 | opelopaba | ⊢ ( 〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ↔  ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 50 | 36 49 | bitrdi | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( 𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ↔  ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 51 | 35 | eleq1d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ↔  〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉  ∈  ( 𝑋  ×  ℝ+ ) ) ) | 
						
							| 52 |  | opelxp | ⊢ ( 〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉  ∈  ( 𝑋  ×  ℝ+ )  ↔  ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ ) ) | 
						
							| 53 | 51 52 | bitr2di | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ↔  𝐶  ∈  ( 𝑋  ×  ℝ+ ) ) ) | 
						
							| 54 |  | df-ov | ⊢ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉 ) | 
						
							| 55 | 35 | fveq2d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ball ‘ 𝐷 ) ‘ 𝐶 )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st  ‘ 𝐶 ) ,  ( 2nd  ‘ 𝐶 ) 〉 ) ) | 
						
							| 56 | 54 55 | eqtr4id | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) )  =  ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) ) ) | 
						
							| 58 | 57 | sseq1d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 59 | 58 | anbi2d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) )  ↔  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 60 | 53 59 | anbi12d | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) )  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 61 |  | 3anass | ⊢ ( ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) )  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 62 | 60 61 | bitr4di | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( ( ( 1st  ‘ 𝐶 )  ∈  𝑋  ∧  ( 2nd  ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( 1st  ‘ 𝐶 ) ( ball ‘ 𝐷 ) ( 2nd  ‘ 𝐶 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) )  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 63 | 50 62 | bitrd | ⊢ ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  →  ( 𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 64 | 33 34 63 | pm5.21nii | ⊢ ( 𝐶  ∈  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) }  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 65 | 32 64 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 𝑋  ×  ℝ+ ) ) )  →  ( 𝐶  ∈  ( 𝐴 𝐹 𝐵 )  ↔  ( 𝐶  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ 𝐶 )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ 𝐶 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝐵 )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) |