| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | bcthlem.4 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | bcthlem.5 |  |-  F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) | 
						
							| 4 |  | bcthlem.6 |  |-  ( ph -> M : NN --> ( Clsd ` J ) ) | 
						
							| 5 |  | bcthlem.7 |  |-  ( ph -> R e. RR+ ) | 
						
							| 6 |  | bcthlem.8 |  |-  ( ph -> C e. X ) | 
						
							| 7 |  | bcthlem.9 |  |-  ( ph -> g : NN --> ( X X. RR+ ) ) | 
						
							| 8 |  | bcthlem.10 |  |-  ( ph -> ( g ` 1 ) = <. C , R >. ) | 
						
							| 9 |  | bcthlem.11 |  |-  ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( k = A -> ( g ` ( k + 1 ) ) = ( g ` ( A + 1 ) ) ) | 
						
							| 11 |  | id |  |-  ( k = A -> k = A ) | 
						
							| 12 |  | fveq2 |  |-  ( k = A -> ( g ` k ) = ( g ` A ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( k = A -> ( k F ( g ` k ) ) = ( A F ( g ` A ) ) ) | 
						
							| 14 | 10 13 | eleq12d |  |-  ( k = A -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) ) | 
						
							| 15 | 14 | rspccva |  |-  ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ A e. NN ) -> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) | 
						
							| 16 | 9 15 | sylan |  |-  ( ( ph /\ A e. NN ) -> ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) ) | 
						
							| 17 | 7 | ffvelcdmda |  |-  ( ( ph /\ A e. NN ) -> ( g ` A ) e. ( X X. RR+ ) ) | 
						
							| 18 | 1 2 3 | bcthlem1 |  |-  ( ( ph /\ ( A e. NN /\ ( g ` A ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) | 
						
							| 19 | 18 | expr |  |-  ( ( ph /\ A e. NN ) -> ( ( g ` A ) e. ( X X. RR+ ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) ) | 
						
							| 20 | 17 19 | mpd |  |-  ( ( ph /\ A e. NN ) -> ( ( g ` ( A + 1 ) ) e. ( A F ( g ` A ) ) <-> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) ) | 
						
							| 21 | 16 20 | mpbid |  |-  ( ( ph /\ A e. NN ) -> ( ( g ` ( A + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( A + 1 ) ) ) < ( 1 / A ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) ) | 
						
							| 22 | 21 | simp3d |  |-  ( ( ph /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` A ) ) \ ( M ` A ) ) ) | 
						
							| 23 | 22 | difss2d |  |-  ( ( ph /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` A ) ) ) | 
						
							| 24 | 23 | 3adant2 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) C_ ( ( ball ` D ) ` ( g ` A ) ) ) | 
						
							| 25 |  | peano2nn |  |-  ( A e. NN -> ( A + 1 ) e. NN ) | 
						
							| 26 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 27 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 28 | 2 26 27 | 3syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 | bcthlem2 |  |-  ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) | 
						
							| 30 | 28 7 29 1 | caublcls |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ ( A + 1 ) e. NN ) -> x e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) ) | 
						
							| 31 | 25 30 | syl3an3 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> x e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( A + 1 ) ) ) ) ) | 
						
							| 32 | 24 31 | sseldd |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ A e. NN ) -> x e. ( ( ball ` D ) ` ( g ` A ) ) ) |