| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | bcthlem.4 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 3 |  | bcthlem.5 |  |-  F = ( k e. NN , z e. ( X X. RR+ ) |-> { <. x , r >. | ( ( x e. X /\ r e. RR+ ) /\ ( r < ( 1 / k ) /\ ( ( cls ` J ) ` ( x ( ball ` D ) r ) ) C_ ( ( ( ball ` D ) ` z ) \ ( M ` k ) ) ) ) } ) | 
						
							| 4 |  | bcthlem.6 |  |-  ( ph -> M : NN --> ( Clsd ` J ) ) | 
						
							| 5 |  | bcthlem.7 |  |-  ( ph -> R e. RR+ ) | 
						
							| 6 |  | bcthlem.8 |  |-  ( ph -> C e. X ) | 
						
							| 7 |  | bcthlem.9 |  |-  ( ph -> g : NN --> ( X X. RR+ ) ) | 
						
							| 8 |  | bcthlem.10 |  |-  ( ph -> ( g ` 1 ) = <. C , R >. ) | 
						
							| 9 |  | bcthlem.11 |  |-  ( ph -> A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) | 
						
							| 10 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 12 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | bcthlem2 |  |-  ( ph -> A. n e. NN ( ( ball ` D ) ` ( g ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( g ` n ) ) ) | 
						
							| 15 |  | elrp |  |-  ( r e. RR+ <-> ( r e. RR /\ 0 < r ) ) | 
						
							| 16 |  | nnrecl |  |-  ( ( r e. RR /\ 0 < r ) -> E. m e. NN ( 1 / m ) < r ) | 
						
							| 17 | 15 16 | sylbi |  |-  ( r e. RR+ -> E. m e. NN ( 1 / m ) < r ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ r e. RR+ ) -> E. m e. NN ( 1 / m ) < r ) | 
						
							| 19 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 21 |  | fvoveq1 |  |-  ( k = m -> ( g ` ( k + 1 ) ) = ( g ` ( m + 1 ) ) ) | 
						
							| 22 |  | id |  |-  ( k = m -> k = m ) | 
						
							| 23 |  | fveq2 |  |-  ( k = m -> ( g ` k ) = ( g ` m ) ) | 
						
							| 24 | 22 23 | oveq12d |  |-  ( k = m -> ( k F ( g ` k ) ) = ( m F ( g ` m ) ) ) | 
						
							| 25 | 21 24 | eleq12d |  |-  ( k = m -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) ) | 
						
							| 26 | 25 | rspccva |  |-  ( ( A. k e. NN ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) | 
						
							| 27 | 9 26 | sylan |  |-  ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) ) | 
						
							| 28 | 7 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( g ` m ) e. ( X X. RR+ ) ) | 
						
							| 29 | 1 2 3 | bcthlem1 |  |-  ( ( ph /\ ( m e. NN /\ ( g ` m ) e. ( X X. RR+ ) ) ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) | 
						
							| 30 | 29 | expr |  |-  ( ( ph /\ m e. NN ) -> ( ( g ` m ) e. ( X X. RR+ ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) ) | 
						
							| 31 | 28 30 | mpd |  |-  ( ( ph /\ m e. NN ) -> ( ( g ` ( m + 1 ) ) e. ( m F ( g ` m ) ) <-> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) ) | 
						
							| 32 | 27 31 | mpbid |  |-  ( ( ph /\ m e. NN ) -> ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) ) | 
						
							| 33 | 32 | simp2d |  |-  ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) ) | 
						
							| 35 | 32 | simp1d |  |-  ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) e. ( X X. RR+ ) ) | 
						
							| 36 |  | xp2nd |  |-  ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR+ ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR+ ) | 
						
							| 38 | 37 | rpred |  |-  ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR ) | 
						
							| 40 |  | nnrecre |  |-  ( m e. NN -> ( 1 / m ) e. RR ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( 1 / m ) e. RR ) | 
						
							| 42 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 43 | 42 | ad2antlr |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> r e. RR ) | 
						
							| 44 |  | lttr |  |-  ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR /\ ( 1 / m ) e. RR /\ r e. RR ) -> ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( 1 / m ) < r ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) | 
						
							| 45 | 39 41 43 44 | syl3anc |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( ( 2nd ` ( g ` ( m + 1 ) ) ) < ( 1 / m ) /\ ( 1 / m ) < r ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) | 
						
							| 46 | 34 45 | mpand |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( 1 / m ) < r -> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) | 
						
							| 47 |  | 2fveq3 |  |-  ( n = ( m + 1 ) -> ( 2nd ` ( g ` n ) ) = ( 2nd ` ( g ` ( m + 1 ) ) ) ) | 
						
							| 48 | 47 | breq1d |  |-  ( n = ( m + 1 ) -> ( ( 2nd ` ( g ` n ) ) < r <-> ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) ) | 
						
							| 49 | 48 | rspcev |  |-  ( ( ( m + 1 ) e. NN /\ ( 2nd ` ( g ` ( m + 1 ) ) ) < r ) -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) | 
						
							| 50 | 20 46 49 | syl6an |  |-  ( ( ( ph /\ r e. RR+ ) /\ m e. NN ) -> ( ( 1 / m ) < r -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) ) | 
						
							| 51 | 50 | rexlimdva |  |-  ( ( ph /\ r e. RR+ ) -> ( E. m e. NN ( 1 / m ) < r -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) ) | 
						
							| 52 | 18 51 | mpd |  |-  ( ( ph /\ r e. RR+ ) -> E. n e. NN ( 2nd ` ( g ` n ) ) < r ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( g ` n ) ) < r ) | 
						
							| 54 | 13 7 14 53 | caubl |  |-  ( ph -> ( 1st o. g ) e. ( Cau ` D ) ) | 
						
							| 55 | 1 | cmetcau |  |-  ( ( D e. ( CMet ` X ) /\ ( 1st o. g ) e. ( Cau ` D ) ) -> ( 1st o. g ) e. dom ( ~~>t ` J ) ) | 
						
							| 56 | 2 54 55 | syl2anc |  |-  ( ph -> ( 1st o. g ) e. dom ( ~~>t ` J ) ) | 
						
							| 57 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 58 |  | fofun |  |-  ( 1st : _V -onto-> _V -> Fun 1st ) | 
						
							| 59 | 57 58 | ax-mp |  |-  Fun 1st | 
						
							| 60 |  | vex |  |-  g e. _V | 
						
							| 61 |  | cofunexg |  |-  ( ( Fun 1st /\ g e. _V ) -> ( 1st o. g ) e. _V ) | 
						
							| 62 | 59 60 61 | mp2an |  |-  ( 1st o. g ) e. _V | 
						
							| 63 | 62 | eldm |  |-  ( ( 1st o. g ) e. dom ( ~~>t ` J ) <-> E. x ( 1st o. g ) ( ~~>t ` J ) x ) | 
						
							| 64 | 56 63 | sylib |  |-  ( ph -> E. x ( 1st o. g ) ( ~~>t ` J ) x ) | 
						
							| 65 |  | 1nn |  |-  1 e. NN | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 | bcthlem3 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ 1 e. NN ) -> x e. ( ( ball ` D ) ` ( g ` 1 ) ) ) | 
						
							| 67 | 65 66 | mp3an3 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( ( ball ` D ) ` ( g ` 1 ) ) ) | 
						
							| 68 | 8 | fveq2d |  |-  ( ph -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( ( ball ` D ) ` <. C , R >. ) ) | 
						
							| 69 |  | df-ov |  |-  ( C ( ball ` D ) R ) = ( ( ball ` D ) ` <. C , R >. ) | 
						
							| 70 | 68 69 | eqtr4di |  |-  ( ph -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( C ( ball ` D ) R ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> ( ( ball ` D ) ` ( g ` 1 ) ) = ( C ( ball ` D ) R ) ) | 
						
							| 72 | 67 71 | eleqtrd |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( C ( ball ` D ) R ) ) | 
						
							| 73 | 1 | mopntop |  |-  ( D e. ( *Met ` X ) -> J e. Top ) | 
						
							| 74 | 13 73 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ m e. NN ) -> J e. Top ) | 
						
							| 76 | 13 | adantr |  |-  ( ( ph /\ m e. NN ) -> D e. ( *Met ` X ) ) | 
						
							| 77 |  | xp1st |  |-  ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( 1st ` ( g ` ( m + 1 ) ) ) e. X ) | 
						
							| 78 | 35 77 | syl |  |-  ( ( ph /\ m e. NN ) -> ( 1st ` ( g ` ( m + 1 ) ) ) e. X ) | 
						
							| 79 | 37 | rpxrd |  |-  ( ( ph /\ m e. NN ) -> ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR* ) | 
						
							| 80 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ ( 1st ` ( g ` ( m + 1 ) ) ) e. X /\ ( 2nd ` ( g ` ( m + 1 ) ) ) e. RR* ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) C_ X ) | 
						
							| 81 | 76 78 79 80 | syl3anc |  |-  ( ( ph /\ m e. NN ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) C_ X ) | 
						
							| 82 |  | df-ov |  |-  ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) | 
						
							| 83 |  | 1st2nd2 |  |-  ( ( g ` ( m + 1 ) ) e. ( X X. RR+ ) -> ( g ` ( m + 1 ) ) = <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) | 
						
							| 84 | 35 83 | syl |  |-  ( ( ph /\ m e. NN ) -> ( g ` ( m + 1 ) ) = <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) | 
						
							| 85 | 84 | fveq2d |  |-  ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( g ` ( m + 1 ) ) ) , ( 2nd ` ( g ` ( m + 1 ) ) ) >. ) ) | 
						
							| 86 | 82 85 | eqtr4id |  |-  ( ( ph /\ m e. NN ) -> ( ( 1st ` ( g ` ( m + 1 ) ) ) ( ball ` D ) ( 2nd ` ( g ` ( m + 1 ) ) ) ) = ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) | 
						
							| 87 | 1 | mopnuni |  |-  ( D e. ( *Met ` X ) -> X = U. J ) | 
						
							| 88 | 13 87 | syl |  |-  ( ph -> X = U. J ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ph /\ m e. NN ) -> X = U. J ) | 
						
							| 90 | 81 86 89 | 3sstr3d |  |-  ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ U. J ) | 
						
							| 91 |  | eqid |  |-  U. J = U. J | 
						
							| 92 | 91 | sscls |  |-  ( ( J e. Top /\ ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ U. J ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) ) | 
						
							| 93 | 75 90 92 | syl2anc |  |-  ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) ) | 
						
							| 94 | 32 | simp3d |  |-  ( ( ph /\ m e. NN ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) | 
						
							| 95 | 93 94 | sstrd |  |-  ( ( ph /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) | 
						
							| 96 | 95 | 3adant2 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) C_ ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) | 
						
							| 97 | 1 2 3 4 5 6 7 8 9 | bcthlem3 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ ( m + 1 ) e. NN ) -> x e. ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) | 
						
							| 98 | 19 97 | syl3an3 |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> x e. ( ( ball ` D ) ` ( g ` ( m + 1 ) ) ) ) | 
						
							| 99 | 96 98 | sseldd |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> x e. ( ( ( ball ` D ) ` ( g ` m ) ) \ ( M ` m ) ) ) | 
						
							| 100 | 99 | eldifbd |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x /\ m e. NN ) -> -. x e. ( M ` m ) ) | 
						
							| 101 | 100 | 3expa |  |-  ( ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) /\ m e. NN ) -> -. x e. ( M ` m ) ) | 
						
							| 102 | 101 | ralrimiva |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> A. m e. NN -. x e. ( M ` m ) ) | 
						
							| 103 |  | eluni2 |  |-  ( x e. U. ran M <-> E. y e. ran M x e. y ) | 
						
							| 104 | 4 | ffnd |  |-  ( ph -> M Fn NN ) | 
						
							| 105 |  | eleq2 |  |-  ( y = ( M ` m ) -> ( x e. y <-> x e. ( M ` m ) ) ) | 
						
							| 106 | 105 | rexrn |  |-  ( M Fn NN -> ( E. y e. ran M x e. y <-> E. m e. NN x e. ( M ` m ) ) ) | 
						
							| 107 | 104 106 | syl |  |-  ( ph -> ( E. y e. ran M x e. y <-> E. m e. NN x e. ( M ` m ) ) ) | 
						
							| 108 | 103 107 | bitrid |  |-  ( ph -> ( x e. U. ran M <-> E. m e. NN x e. ( M ` m ) ) ) | 
						
							| 109 | 108 | notbid |  |-  ( ph -> ( -. x e. U. ran M <-> -. E. m e. NN x e. ( M ` m ) ) ) | 
						
							| 110 |  | ralnex |  |-  ( A. m e. NN -. x e. ( M ` m ) <-> -. E. m e. NN x e. ( M ` m ) ) | 
						
							| 111 | 109 110 | bitr4di |  |-  ( ph -> ( -. x e. U. ran M <-> A. m e. NN -. x e. ( M ` m ) ) ) | 
						
							| 112 | 111 | biimpar |  |-  ( ( ph /\ A. m e. NN -. x e. ( M ` m ) ) -> -. x e. U. ran M ) | 
						
							| 113 | 102 112 | syldan |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> -. x e. U. ran M ) | 
						
							| 114 | 72 113 | eldifd |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> x e. ( ( C ( ball ` D ) R ) \ U. ran M ) ) | 
						
							| 115 | 114 | ne0d |  |-  ( ( ph /\ ( 1st o. g ) ( ~~>t ` J ) x ) -> ( ( C ( ball ` D ) R ) \ U. ran M ) =/= (/) ) | 
						
							| 116 | 64 115 | exlimddv |  |-  ( ph -> ( ( C ( ball ` D ) R ) \ U. ran M ) =/= (/) ) |