| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | bcthlem.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 3 |  | bcthlem.5 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ ,  𝑧  ∈  ( 𝑋  ×  ℝ+ )  ↦  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | 
						
							| 4 |  | bcthlem.6 | ⊢ ( 𝜑  →  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 5 |  | bcthlem.7 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 6 |  | bcthlem.8 | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 7 |  | bcthlem.9 | ⊢ ( 𝜑  →  𝑔 : ℕ ⟶ ( 𝑋  ×  ℝ+ ) ) | 
						
							| 8 |  | bcthlem.10 | ⊢ ( 𝜑  →  ( 𝑔 ‘ 1 )  =  〈 𝐶 ,  𝑅 〉 ) | 
						
							| 9 |  | bcthlem.11 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 10 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 12 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | bcthlem2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ⊆  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 15 |  | elrp | ⊢ ( 𝑟  ∈  ℝ+  ↔  ( 𝑟  ∈  ℝ  ∧  0  <  𝑟 ) ) | 
						
							| 16 |  | nnrecl | ⊢ ( ( 𝑟  ∈  ℝ  ∧  0  <  𝑟 )  →  ∃ 𝑚  ∈  ℕ ( 1  /  𝑚 )  <  𝑟 ) | 
						
							| 17 | 15 16 | sylbi | ⊢ ( 𝑟  ∈  ℝ+  →  ∃ 𝑚  ∈  ℕ ( 1  /  𝑚 )  <  𝑟 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑚  ∈  ℕ ( 1  /  𝑚 )  <  𝑟 ) | 
						
							| 19 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 21 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑔 ‘ ( 𝑘  +  1 ) )  =  ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 22 |  | id | ⊢ ( 𝑘  =  𝑚  →  𝑘  =  𝑚 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  =  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 25 | 21 24 | eleq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) ) | 
						
							| 26 | 25 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 27 | 9 26 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 28 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ 𝑚 )  ∈  ( 𝑋  ×  ℝ+ ) ) | 
						
							| 29 | 1 2 3 | bcthlem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔 ‘ 𝑚 )  ∈  ( 𝑋  ×  ℝ+ ) ) )  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) )  ↔  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) ) ) | 
						
							| 30 | 29 | expr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑚 )  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) )  ↔  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) ) ) ) | 
						
							| 31 | 28 30 | mpd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) )  ↔  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) ) ) | 
						
							| 32 | 27 31 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) ) | 
						
							| 33 | 32 | simp2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 ) ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 ) ) | 
						
							| 35 | 32 | simp1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ ) ) | 
						
							| 36 |  | xp2nd | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 38 | 37 | rpred | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ ) | 
						
							| 40 |  | nnrecre | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 42 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  𝑟  ∈  ℝ ) | 
						
							| 44 |  | lttr | ⊢ ( ( ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ  ∧  ( 1  /  𝑚 )  ∈  ℝ  ∧  𝑟  ∈  ℝ )  →  ( ( ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( 1  /  𝑚 )  <  𝑟 )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  𝑟 ) ) | 
						
							| 45 | 39 41 43 44 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  ( 1  /  𝑚 )  ∧  ( 1  /  𝑚 )  <  𝑟 )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  𝑟 ) ) | 
						
							| 46 | 34 45 | mpand | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( ( 1  /  𝑚 )  <  𝑟  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  𝑟 ) ) | 
						
							| 47 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 48 | 47 | breq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟  ↔  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  𝑟 ) ) | 
						
							| 49 | 48 | rspcev | ⊢ ( ( ( 𝑚  +  1 )  ∈  ℕ  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  <  𝑟 )  →  ∃ 𝑛  ∈  ℕ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟 ) | 
						
							| 50 | 20 46 49 | syl6an | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑚  ∈  ℕ )  →  ( ( 1  /  𝑚 )  <  𝑟  →  ∃ 𝑛  ∈  ℕ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟 ) ) | 
						
							| 51 | 50 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ∃ 𝑚  ∈  ℕ ( 1  /  𝑚 )  <  𝑟  →  ∃ 𝑛  ∈  ℕ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟 ) ) | 
						
							| 52 | 18 51 | mpd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑛  ∈  ℕ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟 ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ℝ+ ∃ 𝑛  ∈  ℕ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  <  𝑟 ) | 
						
							| 54 | 13 7 14 53 | caubl | ⊢ ( 𝜑  →  ( 1st   ∘  𝑔 )  ∈  ( Cau ‘ 𝐷 ) ) | 
						
							| 55 | 1 | cmetcau | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  ( 1st   ∘  𝑔 )  ∈  ( Cau ‘ 𝐷 ) )  →  ( 1st   ∘  𝑔 )  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 56 | 2 54 55 | syl2anc | ⊢ ( 𝜑  →  ( 1st   ∘  𝑔 )  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 57 |  | fo1st | ⊢ 1st  : V –onto→ V | 
						
							| 58 |  | fofun | ⊢ ( 1st  : V –onto→ V  →  Fun  1st  ) | 
						
							| 59 | 57 58 | ax-mp | ⊢ Fun  1st | 
						
							| 60 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 61 |  | cofunexg | ⊢ ( ( Fun  1st   ∧  𝑔  ∈  V )  →  ( 1st   ∘  𝑔 )  ∈  V ) | 
						
							| 62 | 59 60 61 | mp2an | ⊢ ( 1st   ∘  𝑔 )  ∈  V | 
						
							| 63 | 62 | eldm | ⊢ ( ( 1st   ∘  𝑔 )  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  ∃ 𝑥 ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | 
						
							| 64 | 56 63 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | 
						
							| 65 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 | bcthlem3 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  1  ∈  ℕ )  →  𝑥  ∈  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 67 | 65 66 | mp3an3 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 68 | 8 | fveq2d | ⊢ ( 𝜑  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 ,  𝑅 〉 ) ) | 
						
							| 69 |  | df-ov | ⊢ ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 ,  𝑅 〉 ) | 
						
							| 70 | 68 69 | eqtr4di | ⊢ ( 𝜑  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) )  =  ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) )  =  ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) | 
						
							| 72 | 67 71 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) | 
						
							| 73 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 74 | 13 73 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐽  ∈  Top ) | 
						
							| 76 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 77 |  | xp1st | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  →  ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  𝑋 ) | 
						
							| 78 | 35 77 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  𝑋 ) | 
						
							| 79 | 37 | rpxrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ* ) | 
						
							| 80 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  𝑋  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ∈  ℝ* )  →  ( ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  𝑋 ) | 
						
							| 81 | 76 78 79 80 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  𝑋 ) | 
						
							| 82 |  | df-ov | ⊢ ( ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) 〉 ) | 
						
							| 83 |  | 1st2nd2 | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) 〉 ) | 
						
							| 84 | 35 83 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  =  〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) 〉 ) | 
						
							| 85 | 84 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  =  ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) 〉 ) ) | 
						
							| 86 | 82 85 | eqtr4id | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 1st  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd  ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  =  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 87 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 88 | 13 87 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 90 | 81 86 89 | 3sstr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ∪  𝐽 ) | 
						
							| 91 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 92 | 91 | sscls | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ∪  𝐽 )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 93 | 75 90 92 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 94 | 32 | simp3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 95 | 93 94 | sstrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 96 | 95 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝑚  ∈  ℕ )  →  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 97 | 1 2 3 4 5 6 7 8 9 | bcthlem3 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  ( 𝑚  +  1 )  ∈  ℕ )  →  𝑥  ∈  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 98 | 19 97 | syl3an3 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝑚  ∈  ℕ )  →  𝑥  ∈  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 99 | 96 98 | sseldd | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝑚  ∈  ℕ )  →  𝑥  ∈  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) )  ∖  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 100 | 99 | eldifbd | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝑚  ∈  ℕ )  →  ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) | 
						
							| 101 | 100 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑚  ∈  ℕ )  →  ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) | 
						
							| 102 | 101 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ∀ 𝑚  ∈  ℕ ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) | 
						
							| 103 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  ran  𝑀  ↔  ∃ 𝑦  ∈  ran  𝑀 𝑥  ∈  𝑦 ) | 
						
							| 104 | 4 | ffnd | ⊢ ( 𝜑  →  𝑀  Fn  ℕ ) | 
						
							| 105 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝑀 ‘ 𝑚 )  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 106 | 105 | rexrn | ⊢ ( 𝑀  Fn  ℕ  →  ( ∃ 𝑦  ∈  ran  𝑀 𝑥  ∈  𝑦  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 107 | 104 106 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ran  𝑀 𝑥  ∈  𝑦  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 108 | 103 107 | bitrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∪  ran  𝑀  ↔  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 109 | 108 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑥  ∈  ∪  ran  𝑀  ↔  ¬  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 110 |  | ralnex | ⊢ ( ∀ 𝑚  ∈  ℕ ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 )  ↔  ¬  ∃ 𝑚  ∈  ℕ 𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) | 
						
							| 111 | 109 110 | bitr4di | ⊢ ( 𝜑  →  ( ¬  𝑥  ∈  ∪  ran  𝑀  ↔  ∀ 𝑚  ∈  ℕ ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) ) ) | 
						
							| 112 | 111 | biimpar | ⊢ ( ( 𝜑  ∧  ∀ 𝑚  ∈  ℕ ¬  𝑥  ∈  ( 𝑀 ‘ 𝑚 ) )  →  ¬  𝑥  ∈  ∪  ran  𝑀 ) | 
						
							| 113 | 102 112 | syldan | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ¬  𝑥  ∈  ∪  ran  𝑀 ) | 
						
							| 114 | 72 113 | eldifd | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 )  ∖  ∪  ran  𝑀 ) ) | 
						
							| 115 | 114 | ne0d | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 )  ∖  ∪  ran  𝑀 )  ≠  ∅ ) | 
						
							| 116 | 64 115 | exlimddv | ⊢ ( 𝜑  →  ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 )  ∖  ∪  ran  𝑀 )  ≠  ∅ ) |