| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | bcthlem.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 3 |  | bcthlem.5 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ ,  𝑧  ∈  ( 𝑋  ×  ℝ+ )  ↦  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑟  <  ( 1  /  𝑘 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 )  ∖  ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | 
						
							| 4 |  | bcthlem.6 | ⊢ ( 𝜑  →  𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 5 |  | bcthlem.7 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 6 |  | bcthlem.8 | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 7 |  | bcthlem.9 | ⊢ ( 𝜑  →  𝑔 : ℕ ⟶ ( 𝑋  ×  ℝ+ ) ) | 
						
							| 8 |  | bcthlem.10 | ⊢ ( 𝜑  →  ( 𝑔 ‘ 1 )  =  〈 𝐶 ,  𝑅 〉 ) | 
						
							| 9 |  | bcthlem.11 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 10 |  | fvoveq1 | ⊢ ( 𝑘  =  𝐴  →  ( 𝑔 ‘ ( 𝑘  +  1 ) )  =  ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑘  =  𝐴  →  𝑘  =  𝐴 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑘  =  𝐴  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝐴 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑘  =  𝐴  →  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  =  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 14 | 10 13 | eleq12d | ⊢ ( 𝑘  =  𝐴  →  ( ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ∧  𝐴  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 16 | 9 15 | sylan | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 17 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( 𝑔 ‘ 𝐴 )  ∈  ( 𝑋  ×  ℝ+ ) ) | 
						
							| 18 | 1 2 3 | bcthlem1 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ℕ  ∧  ( 𝑔 ‘ 𝐴 )  ∈  ( 𝑋  ×  ℝ+ ) ) )  →  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) )  ↔  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 19 | 18 | expr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝐴 )  ∈  ( 𝑋  ×  ℝ+ )  →  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) )  ↔  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 20 | 17 19 | mpd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) )  ↔  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) ) | 
						
							| 21 | 16 20 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑔 ‘ ( 𝐴  +  1 ) )  ∈  ( 𝑋  ×  ℝ+ )  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) )  <  ( 1  /  𝐴 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) ) | 
						
							| 22 | 21 | simp3d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) )  ∖  ( 𝑀 ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | difss2d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝐴  ∈  ℕ )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) )  ⊆  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 25 |  | peano2nn | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 26 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 27 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 28 | 2 26 27 | 3syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 | bcthlem2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛  +  1 ) ) )  ⊆  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 30 | 28 7 29 1 | caublcls | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  ( 𝐴  +  1 )  ∈  ℕ )  →  𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 31 | 25 30 | syl3an3 | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝐴  ∈  ℕ )  →  𝑥  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 32 | 24 31 | sseldd | ⊢ ( ( 𝜑  ∧  ( 1st   ∘  𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ∧  𝐴  ∈  ℕ )  →  𝑥  ∈  ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |