| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  | 
						
							| 2 |  | bcthlem.4 |  | 
						
							| 3 |  | bcthlem.5 |  | 
						
							| 4 |  | bcthlem.6 |  | 
						
							| 5 |  | bcthlem.7 |  | 
						
							| 6 |  | bcthlem.8 |  | 
						
							| 7 |  | bcthlem.9 |  | 
						
							| 8 |  | bcthlem.10 |  | 
						
							| 9 |  | bcthlem.11 |  | 
						
							| 10 |  | cmetmet |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 |  | metxmet |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | bcthlem2 |  | 
						
							| 15 |  | elrp |  | 
						
							| 16 |  | nnrecl |  | 
						
							| 17 | 15 16 | sylbi |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 |  | peano2nn |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 |  | fvoveq1 |  | 
						
							| 22 |  | id |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 22 23 | oveq12d |  | 
						
							| 25 | 21 24 | eleq12d |  | 
						
							| 26 | 25 | rspccva |  | 
						
							| 27 | 9 26 | sylan |  | 
						
							| 28 | 7 | ffvelcdmda |  | 
						
							| 29 | 1 2 3 | bcthlem1 |  | 
						
							| 30 | 29 | expr |  | 
						
							| 31 | 28 30 | mpd |  | 
						
							| 32 | 27 31 | mpbid |  | 
						
							| 33 | 32 | simp2d |  | 
						
							| 34 | 33 | adantlr |  | 
						
							| 35 | 32 | simp1d |  | 
						
							| 36 |  | xp2nd |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 | 37 | rpred |  | 
						
							| 39 | 38 | adantlr |  | 
						
							| 40 |  | nnrecre |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | rpre |  | 
						
							| 43 | 42 | ad2antlr |  | 
						
							| 44 |  | lttr |  | 
						
							| 45 | 39 41 43 44 | syl3anc |  | 
						
							| 46 | 34 45 | mpand |  | 
						
							| 47 |  | 2fveq3 |  | 
						
							| 48 | 47 | breq1d |  | 
						
							| 49 | 48 | rspcev |  | 
						
							| 50 | 20 46 49 | syl6an |  | 
						
							| 51 | 50 | rexlimdva |  | 
						
							| 52 | 18 51 | mpd |  | 
						
							| 53 | 52 | ralrimiva |  | 
						
							| 54 | 13 7 14 53 | caubl |  | 
						
							| 55 | 1 | cmetcau |  | 
						
							| 56 | 2 54 55 | syl2anc |  | 
						
							| 57 |  | fo1st |  | 
						
							| 58 |  | fofun |  | 
						
							| 59 | 57 58 | ax-mp |  | 
						
							| 60 |  | vex |  | 
						
							| 61 |  | cofunexg |  | 
						
							| 62 | 59 60 61 | mp2an |  | 
						
							| 63 | 62 | eldm |  | 
						
							| 64 | 56 63 | sylib |  | 
						
							| 65 |  | 1nn |  | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 | bcthlem3 |  | 
						
							| 67 | 65 66 | mp3an3 |  | 
						
							| 68 | 8 | fveq2d |  | 
						
							| 69 |  | df-ov |  | 
						
							| 70 | 68 69 | eqtr4di |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 67 71 | eleqtrd |  | 
						
							| 73 | 1 | mopntop |  | 
						
							| 74 | 13 73 | syl |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 13 | adantr |  | 
						
							| 77 |  | xp1st |  | 
						
							| 78 | 35 77 | syl |  | 
						
							| 79 | 37 | rpxrd |  | 
						
							| 80 |  | blssm |  | 
						
							| 81 | 76 78 79 80 | syl3anc |  | 
						
							| 82 |  | df-ov |  | 
						
							| 83 |  | 1st2nd2 |  | 
						
							| 84 | 35 83 | syl |  | 
						
							| 85 | 84 | fveq2d |  | 
						
							| 86 | 82 85 | eqtr4id |  | 
						
							| 87 | 1 | mopnuni |  | 
						
							| 88 | 13 87 | syl |  | 
						
							| 89 | 88 | adantr |  | 
						
							| 90 | 81 86 89 | 3sstr3d |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 91 | sscls |  | 
						
							| 93 | 75 90 92 | syl2anc |  | 
						
							| 94 | 32 | simp3d |  | 
						
							| 95 | 93 94 | sstrd |  | 
						
							| 96 | 95 | 3adant2 |  | 
						
							| 97 | 1 2 3 4 5 6 7 8 9 | bcthlem3 |  | 
						
							| 98 | 19 97 | syl3an3 |  | 
						
							| 99 | 96 98 | sseldd |  | 
						
							| 100 | 99 | eldifbd |  | 
						
							| 101 | 100 | 3expa |  | 
						
							| 102 | 101 | ralrimiva |  | 
						
							| 103 |  | eluni2 |  | 
						
							| 104 | 4 | ffnd |  | 
						
							| 105 |  | eleq2 |  | 
						
							| 106 | 105 | rexrn |  | 
						
							| 107 | 104 106 | syl |  | 
						
							| 108 | 103 107 | bitrid |  | 
						
							| 109 | 108 | notbid |  | 
						
							| 110 |  | ralnex |  | 
						
							| 111 | 109 110 | bitr4di |  | 
						
							| 112 | 111 | biimpar |  | 
						
							| 113 | 102 112 | syldan |  | 
						
							| 114 | 72 113 | eldifd |  | 
						
							| 115 | 114 | ne0d |  | 
						
							| 116 | 64 115 | exlimddv |  |