Metamath Proof Explorer


Theorem bnj571

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj571.3
|- D = ( _om \ { (/) } )
bnj571.16
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } )
bnj571.17
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) )
bnj571.18
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) )
bnj571.19
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
bnj571.20
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) )
bnj571.22
|- B = U_ y e. ( f ` i ) _pred ( y , A , R )
bnj571.23
|- C = U_ y e. ( f ` p ) _pred ( y , A , R )
bnj571.24
|- K = U_ y e. ( G ` i ) _pred ( y , A , R )
bnj571.25
|- L = U_ y e. ( G ` p ) _pred ( y , A , R )
bnj571.26
|- G = ( f u. { <. m , C >. } )
bnj571.29
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) )
bnj571.30
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj571.38
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n )
bnj571.21
|- ( rh <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) )
bnj571.40
|- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n )
bnj571.33
|- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )
Assertion bnj571
|- ( ( R _FrSe A /\ ta /\ et ) -> ps" )

Proof

Step Hyp Ref Expression
1 bnj571.3
 |-  D = ( _om \ { (/) } )
2 bnj571.16
 |-  G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } )
3 bnj571.17
 |-  ( ta <-> ( f Fn m /\ ph' /\ ps' ) )
4 bnj571.18
 |-  ( si <-> ( m e. D /\ n = suc m /\ p e. m ) )
5 bnj571.19
 |-  ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
6 bnj571.20
 |-  ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) )
7 bnj571.22
 |-  B = U_ y e. ( f ` i ) _pred ( y , A , R )
8 bnj571.23
 |-  C = U_ y e. ( f ` p ) _pred ( y , A , R )
9 bnj571.24
 |-  K = U_ y e. ( G ` i ) _pred ( y , A , R )
10 bnj571.25
 |-  L = U_ y e. ( G ` p ) _pred ( y , A , R )
11 bnj571.26
 |-  G = ( f u. { <. m , C >. } )
12 bnj571.29
 |-  ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) )
13 bnj571.30
 |-  ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
14 bnj571.38
 |-  ( ( R _FrSe A /\ ta /\ si ) -> G Fn n )
15 bnj571.21
 |-  ( rh <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) )
16 bnj571.40
 |-  ( ( R _FrSe A /\ ta /\ et ) -> G Fn n )
17 bnj571.33
 |-  ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )
18 nfv
 |-  F/ i R _FrSe A
19 nfv
 |-  F/ i f Fn m
20 nfv
 |-  F/ i ph'
21 nfra1
 |-  F/ i A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) )
22 13 21 nfxfr
 |-  F/ i ps'
23 19 20 22 nf3an
 |-  F/ i ( f Fn m /\ ph' /\ ps' )
24 3 23 nfxfr
 |-  F/ i ta
25 nfv
 |-  F/ i et
26 18 24 25 nf3an
 |-  F/ i ( R _FrSe A /\ ta /\ et )
27 df-bnj17
 |-  ( ( R _FrSe A /\ ta /\ et /\ ze ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ze ) )
28 3anass
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) /\ m = suc i ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( ( i e. _om /\ suc i e. n ) /\ m = suc i ) ) )
29 3anrot
 |-  ( ( m = suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) /\ m = suc i ) )
30 df-3an
 |-  ( ( i e. _om /\ suc i e. n /\ m = suc i ) <-> ( ( i e. _om /\ suc i e. n ) /\ m = suc i ) )
31 6 30 bitri
 |-  ( ze <-> ( ( i e. _om /\ suc i e. n ) /\ m = suc i ) )
32 31 anbi2i
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ze ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( ( i e. _om /\ suc i e. n ) /\ m = suc i ) ) )
33 28 29 32 3bitr4ri
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ze ) <-> ( m = suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) )
34 27 33 bitri
 |-  ( ( R _FrSe A /\ ta /\ et /\ ze ) <-> ( m = suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj558
 |-  ( ( R _FrSe A /\ ta /\ et /\ ze ) -> ( G ` suc i ) = K )
36 34 35 sylbir
 |-  ( ( m = suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = K )
37 36 3expib
 |-  ( m = suc i -> ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = K ) )
38 df-bnj17
 |-  ( ( R _FrSe A /\ ta /\ et /\ rh ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ rh ) )
39 3anass
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) ) )
40 3anrot
 |-  ( ( m =/= suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) )
41 df-3an
 |-  ( ( i e. _om /\ suc i e. n /\ m =/= suc i ) <-> ( ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) )
42 15 41 bitri
 |-  ( rh <-> ( ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) )
43 42 anbi2i
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ rh ) <-> ( ( R _FrSe A /\ ta /\ et ) /\ ( ( i e. _om /\ suc i e. n ) /\ m =/= suc i ) ) )
44 39 40 43 3bitr4ri
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ rh ) <-> ( m =/= suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) )
45 38 44 bitri
 |-  ( ( R _FrSe A /\ ta /\ et /\ rh ) <-> ( m =/= suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) )
46 1 3 5 15 9 2 16 13 bnj570
 |-  ( ( R _FrSe A /\ ta /\ et /\ rh ) -> ( G ` suc i ) = K )
47 45 46 sylbir
 |-  ( ( m =/= suc i /\ ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = K )
48 47 3expib
 |-  ( m =/= suc i -> ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = K ) )
49 37 48 pm2.61ine
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = K )
50 49 9 eqtrdi
 |-  ( ( ( R _FrSe A /\ ta /\ et ) /\ ( i e. _om /\ suc i e. n ) ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) )
51 50 exp32
 |-  ( ( R _FrSe A /\ ta /\ et ) -> ( i e. _om -> ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) )
52 26 51 alrimi
 |-  ( ( R _FrSe A /\ ta /\ et ) -> A. i ( i e. _om -> ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) )
53 17 bnj946
 |-  ( ps" <-> A. i ( i e. _om -> ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) )
54 52 53 sylibr
 |-  ( ( R _FrSe A /\ ta /\ et ) -> ps" )