Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
5 |
|
cantnf.c |
|- ( ph -> C e. ( A ^o B ) ) |
6 |
|
cantnf.s |
|- ( ph -> C C_ ran ( A CNF B ) ) |
7 |
|
cantnf.e |
|- ( ph -> (/) e. C ) |
8 |
|
cantnf.x |
|- X = U. |^| { c e. On | C e. ( A ^o c ) } |
9 |
|
cantnf.p |
|- P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) |
10 |
|
cantnf.y |
|- Y = ( 1st ` P ) |
11 |
|
cantnf.z |
|- Z = ( 2nd ` P ) |
12 |
1 2 3 4 5 6 7
|
cantnflem2 |
|- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |
13 |
|
eqid |
|- X = X |
14 |
|
eqid |
|- Y = Y |
15 |
|
eqid |
|- Z = Z |
16 |
13 14 15
|
3pm3.2i |
|- ( X = X /\ Y = Y /\ Z = Z ) |
17 |
8 9 10 11
|
oeeui |
|- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) <-> ( X = X /\ Y = Y /\ Z = Z ) ) ) |
18 |
16 17
|
mpbiri |
|- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
19 |
12 18
|
syl |
|- ( ph -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
20 |
19
|
simpld |
|- ( ph -> ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) ) |
21 |
20
|
simp1d |
|- ( ph -> X e. On ) |
22 |
|
oecl |
|- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
23 |
2 21 22
|
syl2anc |
|- ( ph -> ( A ^o X ) e. On ) |
24 |
20
|
simp2d |
|- ( ph -> Y e. ( A \ 1o ) ) |
25 |
24
|
eldifad |
|- ( ph -> Y e. A ) |
26 |
|
onelon |
|- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
27 |
2 25 26
|
syl2anc |
|- ( ph -> Y e. On ) |
28 |
|
omcl |
|- ( ( ( A ^o X ) e. On /\ Y e. On ) -> ( ( A ^o X ) .o Y ) e. On ) |
29 |
23 27 28
|
syl2anc |
|- ( ph -> ( ( A ^o X ) .o Y ) e. On ) |
30 |
20
|
simp3d |
|- ( ph -> Z e. ( A ^o X ) ) |
31 |
|
onelon |
|- ( ( ( A ^o X ) e. On /\ Z e. ( A ^o X ) ) -> Z e. On ) |
32 |
23 30 31
|
syl2anc |
|- ( ph -> Z e. On ) |
33 |
|
oaword1 |
|- ( ( ( ( A ^o X ) .o Y ) e. On /\ Z e. On ) -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
34 |
29 32 33
|
syl2anc |
|- ( ph -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
35 |
|
dif1o |
|- ( Y e. ( A \ 1o ) <-> ( Y e. A /\ Y =/= (/) ) ) |
36 |
35
|
simprbi |
|- ( Y e. ( A \ 1o ) -> Y =/= (/) ) |
37 |
24 36
|
syl |
|- ( ph -> Y =/= (/) ) |
38 |
|
on0eln0 |
|- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
39 |
27 38
|
syl |
|- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
40 |
37 39
|
mpbird |
|- ( ph -> (/) e. Y ) |
41 |
|
omword1 |
|- ( ( ( ( A ^o X ) e. On /\ Y e. On ) /\ (/) e. Y ) -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
42 |
23 27 40 41
|
syl21anc |
|- ( ph -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
43 |
42 30
|
sseldd |
|- ( ph -> Z e. ( ( A ^o X ) .o Y ) ) |
44 |
34 43
|
sseldd |
|- ( ph -> Z e. ( ( ( A ^o X ) .o Y ) +o Z ) ) |
45 |
19
|
simprd |
|- ( ph -> ( ( ( A ^o X ) .o Y ) +o Z ) = C ) |
46 |
44 45
|
eleqtrd |
|- ( ph -> Z e. C ) |
47 |
6 46
|
sseldd |
|- ( ph -> Z e. ran ( A CNF B ) ) |
48 |
1 2 3
|
cantnff |
|- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
49 |
|
ffn |
|- ( ( A CNF B ) : S --> ( A ^o B ) -> ( A CNF B ) Fn S ) |
50 |
|
fvelrnb |
|- ( ( A CNF B ) Fn S -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) |
51 |
48 49 50
|
3syl |
|- ( ph -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) |
52 |
47 51
|
mpbid |
|- ( ph -> E. g e. S ( ( A CNF B ) ` g ) = Z ) |
53 |
2
|
adantr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> A e. On ) |
54 |
3
|
adantr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> B e. On ) |
55 |
5
|
adantr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ( A ^o B ) ) |
56 |
6
|
adantr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C C_ ran ( A CNF B ) ) |
57 |
7
|
adantr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> (/) e. C ) |
58 |
|
simprl |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> g e. S ) |
59 |
|
simprr |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> ( ( A CNF B ) ` g ) = Z ) |
60 |
|
eqid |
|- ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) = ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) |
61 |
1 53 54 4 55 56 57 8 9 10 11 58 59 60
|
cantnflem3 |
|- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ran ( A CNF B ) ) |
62 |
52 61
|
rexlimddv |
|- ( ph -> C e. ran ( A CNF B ) ) |