| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oeeu.1 |
|- X = U. |^| { x e. On | B e. ( A ^o x ) } |
| 2 |
|
oeeu.2 |
|- P = ( iota w E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) ) |
| 3 |
|
oeeu.3 |
|- Y = ( 1st ` P ) |
| 4 |
|
oeeu.4 |
|- Z = ( 2nd ` P ) |
| 5 |
|
eldifi |
|- ( A e. ( On \ 2o ) -> A e. On ) |
| 6 |
5
|
adantr |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> A e. On ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> A e. On ) |
| 8 |
|
simprl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C e. On ) |
| 9 |
|
oecl |
|- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) e. On ) |
| 11 |
|
om1 |
|- ( ( A ^o C ) e. On -> ( ( A ^o C ) .o 1o ) = ( A ^o C ) ) |
| 12 |
10 11
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o 1o ) = ( A ^o C ) ) |
| 13 |
|
df1o2 |
|- 1o = { (/) } |
| 14 |
|
dif1o |
|- ( D e. ( A \ 1o ) <-> ( D e. A /\ D =/= (/) ) ) |
| 15 |
14
|
simprbi |
|- ( D e. ( A \ 1o ) -> D =/= (/) ) |
| 16 |
15
|
ad2antll |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D =/= (/) ) |
| 17 |
|
eldifi |
|- ( D e. ( A \ 1o ) -> D e. A ) |
| 18 |
17
|
ad2antll |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D e. A ) |
| 19 |
|
onelon |
|- ( ( A e. On /\ D e. A ) -> D e. On ) |
| 20 |
7 18 19
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> D e. On ) |
| 21 |
|
on0eln0 |
|- ( D e. On -> ( (/) e. D <-> D =/= (/) ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( (/) e. D <-> D =/= (/) ) ) |
| 23 |
16 22
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. D ) |
| 24 |
23
|
snssd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> { (/) } C_ D ) |
| 25 |
13 24
|
eqsstrid |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> 1o C_ D ) |
| 26 |
|
1on |
|- 1o e. On |
| 27 |
26
|
a1i |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> 1o e. On ) |
| 28 |
|
omwordi |
|- ( ( 1o e. On /\ D e. On /\ ( A ^o C ) e. On ) -> ( 1o C_ D -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) ) |
| 29 |
27 20 10 28
|
syl3anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( 1o C_ D -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) ) |
| 30 |
25 29
|
mpd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o 1o ) C_ ( ( A ^o C ) .o D ) ) |
| 31 |
12 30
|
eqsstrrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) C_ ( ( A ^o C ) .o D ) ) |
| 32 |
|
omcl |
|- ( ( ( A ^o C ) e. On /\ D e. On ) -> ( ( A ^o C ) .o D ) e. On ) |
| 33 |
10 20 32
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) e. On ) |
| 34 |
|
simplrl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> E e. ( A ^o C ) ) |
| 35 |
|
onelon |
|- ( ( ( A ^o C ) e. On /\ E e. ( A ^o C ) ) -> E e. On ) |
| 36 |
10 34 35
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> E e. On ) |
| 37 |
|
oaword1 |
|- ( ( ( ( A ^o C ) .o D ) e. On /\ E e. On ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
| 38 |
33 36 37
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
| 39 |
|
simplrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o E ) = B ) |
| 40 |
38 39
|
sseqtrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o D ) C_ B ) |
| 41 |
31 40
|
sstrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) C_ B ) |
| 42 |
1
|
oeeulem |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( X e. On /\ ( A ^o X ) C_ B /\ B e. ( A ^o suc X ) ) ) |
| 43 |
42
|
simp3d |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. ( A ^o suc X ) ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( A ^o suc X ) ) |
| 45 |
42
|
simp1d |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. On ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X e. On ) |
| 47 |
|
onsuc |
|- ( X e. On -> suc X e. On ) |
| 48 |
46 47
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc X e. On ) |
| 49 |
|
oecl |
|- ( ( A e. On /\ suc X e. On ) -> ( A ^o suc X ) e. On ) |
| 50 |
7 48 49
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc X ) e. On ) |
| 51 |
|
ontr2 |
|- ( ( ( A ^o C ) e. On /\ ( A ^o suc X ) e. On ) -> ( ( ( A ^o C ) C_ B /\ B e. ( A ^o suc X ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 52 |
10 50 51
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) C_ B /\ B e. ( A ^o suc X ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 53 |
41 44 52
|
mp2and |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o C ) e. ( A ^o suc X ) ) |
| 54 |
|
simplll |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> A e. ( On \ 2o ) ) |
| 55 |
|
oeord |
|- ( ( C e. On /\ suc X e. On /\ A e. ( On \ 2o ) ) -> ( C e. suc X <-> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 56 |
8 48 54 55
|
syl3anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C e. suc X <-> ( A ^o C ) e. ( A ^o suc X ) ) ) |
| 57 |
53 56
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C e. suc X ) |
| 58 |
|
onsssuc |
|- ( ( C e. On /\ X e. On ) -> ( C C_ X <-> C e. suc X ) ) |
| 59 |
8 46 58
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C C_ X <-> C e. suc X ) ) |
| 60 |
57 59
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C C_ X ) |
| 61 |
42
|
simp2d |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) C_ B ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) C_ B ) |
| 63 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 64 |
7 63
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> Ord A ) |
| 65 |
|
ordsucss |
|- ( Ord A -> ( D e. A -> suc D C_ A ) ) |
| 66 |
64 18 65
|
sylc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc D C_ A ) |
| 67 |
|
onsuc |
|- ( D e. On -> suc D e. On ) |
| 68 |
20 67
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc D e. On ) |
| 69 |
|
dif20el |
|- ( A e. ( On \ 2o ) -> (/) e. A ) |
| 70 |
54 69
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. A ) |
| 71 |
|
oen0 |
|- ( ( ( A e. On /\ C e. On ) /\ (/) e. A ) -> (/) e. ( A ^o C ) ) |
| 72 |
7 8 70 71
|
syl21anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> (/) e. ( A ^o C ) ) |
| 73 |
|
omword |
|- ( ( ( suc D e. On /\ A e. On /\ ( A ^o C ) e. On ) /\ (/) e. ( A ^o C ) ) -> ( suc D C_ A <-> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) ) |
| 74 |
68 7 10 72 73
|
syl31anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( suc D C_ A <-> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) ) |
| 75 |
66 74
|
mpbid |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o suc D ) C_ ( ( A ^o C ) .o A ) ) |
| 76 |
|
oaord |
|- ( ( E e. On /\ ( A ^o C ) e. On /\ ( ( A ^o C ) .o D ) e. On ) -> ( E e. ( A ^o C ) <-> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) ) |
| 77 |
36 10 33 76
|
syl3anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( E e. ( A ^o C ) <-> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) ) |
| 78 |
34 77
|
mpbid |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o E ) e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 79 |
39 78
|
eqeltrrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 80 |
|
odi |
|- ( ( ( A ^o C ) e. On /\ D e. On /\ 1o e. On ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) ) |
| 81 |
10 20 27 80
|
syl3anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) ) |
| 82 |
|
oa1suc |
|- ( D e. On -> ( D +o 1o ) = suc D ) |
| 83 |
20 82
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( D +o 1o ) = suc D ) |
| 84 |
83
|
oveq2d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o ( D +o 1o ) ) = ( ( A ^o C ) .o suc D ) ) |
| 85 |
12
|
oveq2d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o C ) .o D ) +o ( ( A ^o C ) .o 1o ) ) = ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 86 |
81 84 85
|
3eqtr3d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( A ^o C ) .o suc D ) = ( ( ( A ^o C ) .o D ) +o ( A ^o C ) ) ) |
| 87 |
79 86
|
eleqtrrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( A ^o C ) .o suc D ) ) |
| 88 |
75 87
|
sseldd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( ( A ^o C ) .o A ) ) |
| 89 |
|
oesuc |
|- ( ( A e. On /\ C e. On ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 90 |
7 8 89
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 91 |
88 90
|
eleqtrrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> B e. ( A ^o suc C ) ) |
| 92 |
|
oecl |
|- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
| 93 |
7 46 92
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) e. On ) |
| 94 |
|
onsuc |
|- ( C e. On -> suc C e. On ) |
| 95 |
94
|
ad2antrl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> suc C e. On ) |
| 96 |
|
oecl |
|- ( ( A e. On /\ suc C e. On ) -> ( A ^o suc C ) e. On ) |
| 97 |
7 95 96
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o suc C ) e. On ) |
| 98 |
|
ontr2 |
|- ( ( ( A ^o X ) e. On /\ ( A ^o suc C ) e. On ) -> ( ( ( A ^o X ) C_ B /\ B e. ( A ^o suc C ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 99 |
93 97 98
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( ( ( A ^o X ) C_ B /\ B e. ( A ^o suc C ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 100 |
62 91 99
|
mp2and |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( A ^o X ) e. ( A ^o suc C ) ) |
| 101 |
|
oeord |
|- ( ( X e. On /\ suc C e. On /\ A e. ( On \ 2o ) ) -> ( X e. suc C <-> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 102 |
46 95 54 101
|
syl3anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( X e. suc C <-> ( A ^o X ) e. ( A ^o suc C ) ) ) |
| 103 |
100 102
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X e. suc C ) |
| 104 |
|
onsssuc |
|- ( ( X e. On /\ C e. On ) -> ( X C_ C <-> X e. suc C ) ) |
| 105 |
46 8 104
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( X C_ C <-> X e. suc C ) ) |
| 106 |
103 105
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> X C_ C ) |
| 107 |
60 106
|
eqssd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> C = X ) |
| 108 |
107 20
|
jca |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C e. On /\ D e. ( A \ 1o ) ) ) -> ( C = X /\ D e. On ) ) |
| 109 |
|
simprl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> C = X ) |
| 110 |
45
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> X e. On ) |
| 111 |
109 110
|
eqeltrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> C e. On ) |
| 112 |
6
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> A e. On ) |
| 113 |
112 111 9
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) e. On ) |
| 114 |
|
simprr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. On ) |
| 115 |
113 114 32
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) e. On ) |
| 116 |
|
simplrl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> E e. ( A ^o C ) ) |
| 117 |
113 116 35
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> E e. On ) |
| 118 |
115 117 37
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) C_ ( ( ( A ^o C ) .o D ) +o E ) ) |
| 119 |
|
simplrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o D ) +o E ) = B ) |
| 120 |
118 119
|
sseqtrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) C_ B ) |
| 121 |
43
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. ( A ^o suc X ) ) |
| 122 |
|
suceq |
|- ( C = X -> suc C = suc X ) |
| 123 |
122
|
ad2antrl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> suc C = suc X ) |
| 124 |
123
|
oveq2d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc C ) = ( A ^o suc X ) ) |
| 125 |
112 111 89
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 126 |
124 125
|
eqtr3d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o suc X ) = ( ( A ^o C ) .o A ) ) |
| 127 |
121 126
|
eleqtrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. ( ( A ^o C ) .o A ) ) |
| 128 |
|
omcl |
|- ( ( ( A ^o C ) e. On /\ A e. On ) -> ( ( A ^o C ) .o A ) e. On ) |
| 129 |
113 112 128
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o A ) e. On ) |
| 130 |
|
ontr2 |
|- ( ( ( ( A ^o C ) .o D ) e. On /\ ( ( A ^o C ) .o A ) e. On ) -> ( ( ( ( A ^o C ) .o D ) C_ B /\ B e. ( ( A ^o C ) .o A ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 131 |
115 129 130
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( ( A ^o C ) .o D ) C_ B /\ B e. ( ( A ^o C ) .o A ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 132 |
120 127 131
|
mp2and |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) |
| 133 |
69
|
adantr |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> (/) e. A ) |
| 134 |
133
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> (/) e. A ) |
| 135 |
112 111 134 71
|
syl21anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> (/) e. ( A ^o C ) ) |
| 136 |
|
omord2 |
|- ( ( ( D e. On /\ A e. On /\ ( A ^o C ) e. On ) /\ (/) e. ( A ^o C ) ) -> ( D e. A <-> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 137 |
114 112 113 135 136
|
syl31anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D e. A <-> ( ( A ^o C ) .o D ) e. ( ( A ^o C ) .o A ) ) ) |
| 138 |
132 137
|
mpbird |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. A ) |
| 139 |
109
|
oveq2d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) = ( A ^o X ) ) |
| 140 |
61
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o X ) C_ B ) |
| 141 |
139 140
|
eqsstrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( A ^o C ) C_ B ) |
| 142 |
|
eldifi |
|- ( B e. ( On \ 1o ) -> B e. On ) |
| 143 |
142
|
adantl |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. On ) |
| 144 |
143
|
ad2antrr |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> B e. On ) |
| 145 |
|
ontri1 |
|- ( ( ( A ^o C ) e. On /\ B e. On ) -> ( ( A ^o C ) C_ B <-> -. B e. ( A ^o C ) ) ) |
| 146 |
113 144 145
|
syl2anc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) C_ B <-> -. B e. ( A ^o C ) ) ) |
| 147 |
141 146
|
mpbid |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> -. B e. ( A ^o C ) ) |
| 148 |
|
om0 |
|- ( ( A ^o C ) e. On -> ( ( A ^o C ) .o (/) ) = (/) ) |
| 149 |
113 148
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( A ^o C ) .o (/) ) = (/) ) |
| 150 |
149
|
oveq1d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) = ( (/) +o E ) ) |
| 151 |
|
oa0r |
|- ( E e. On -> ( (/) +o E ) = E ) |
| 152 |
117 151
|
syl |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( (/) +o E ) = E ) |
| 153 |
150 152
|
eqtrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) = E ) |
| 154 |
153 116
|
eqeltrd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( A ^o C ) .o (/) ) +o E ) e. ( A ^o C ) ) |
| 155 |
|
oveq2 |
|- ( D = (/) -> ( ( A ^o C ) .o D ) = ( ( A ^o C ) .o (/) ) ) |
| 156 |
155
|
oveq1d |
|- ( D = (/) -> ( ( ( A ^o C ) .o D ) +o E ) = ( ( ( A ^o C ) .o (/) ) +o E ) ) |
| 157 |
156
|
eleq1d |
|- ( D = (/) -> ( ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) <-> ( ( ( A ^o C ) .o (/) ) +o E ) e. ( A ^o C ) ) ) |
| 158 |
154 157
|
syl5ibrcom |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D = (/) -> ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) ) ) |
| 159 |
119
|
eleq1d |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( ( ( ( A ^o C ) .o D ) +o E ) e. ( A ^o C ) <-> B e. ( A ^o C ) ) ) |
| 160 |
158 159
|
sylibd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( D = (/) -> B e. ( A ^o C ) ) ) |
| 161 |
160
|
necon3bd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( -. B e. ( A ^o C ) -> D =/= (/) ) ) |
| 162 |
147 161
|
mpd |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D =/= (/) ) |
| 163 |
138 162 14
|
sylanbrc |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> D e. ( A \ 1o ) ) |
| 164 |
111 163
|
jca |
|- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) /\ ( C = X /\ D e. On ) ) -> ( C e. On /\ D e. ( A \ 1o ) ) ) |
| 165 |
108 164
|
impbida |
|- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) -> ( ( C e. On /\ D e. ( A \ 1o ) ) <-> ( C = X /\ D e. On ) ) ) |
| 166 |
165
|
ex |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) -> ( ( C e. On /\ D e. ( A \ 1o ) ) <-> ( C = X /\ D e. On ) ) ) ) |
| 167 |
166
|
pm5.32rd |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( ( C = X /\ D e. On ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) |
| 168 |
|
anass |
|- ( ( ( C = X /\ D e. On ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) |
| 169 |
167 168
|
bitrdi |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) ) ) |
| 170 |
|
3anass |
|- ( ( D e. On /\ E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) |
| 171 |
|
oveq2 |
|- ( C = X -> ( A ^o C ) = ( A ^o X ) ) |
| 172 |
171
|
eleq2d |
|- ( C = X -> ( E e. ( A ^o C ) <-> E e. ( A ^o X ) ) ) |
| 173 |
171
|
oveq1d |
|- ( C = X -> ( ( A ^o C ) .o D ) = ( ( A ^o X ) .o D ) ) |
| 174 |
173
|
oveq1d |
|- ( C = X -> ( ( ( A ^o C ) .o D ) +o E ) = ( ( ( A ^o X ) .o D ) +o E ) ) |
| 175 |
174
|
eqeq1d |
|- ( C = X -> ( ( ( ( A ^o C ) .o D ) +o E ) = B <-> ( ( ( A ^o X ) .o D ) +o E ) = B ) ) |
| 176 |
172 175
|
3anbi23d |
|- ( C = X -> ( ( D e. On /\ E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) ) ) |
| 177 |
170 176
|
bitr3id |
|- ( C = X -> ( ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) ) ) |
| 178 |
6 45 92
|
syl2anc |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) e. On ) |
| 179 |
|
oen0 |
|- ( ( ( A e. On /\ X e. On ) /\ (/) e. A ) -> (/) e. ( A ^o X ) ) |
| 180 |
6 45 133 179
|
syl21anc |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> (/) e. ( A ^o X ) ) |
| 181 |
180
|
ne0d |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) =/= (/) ) |
| 182 |
|
omeu |
|- ( ( ( A ^o X ) e. On /\ B e. On /\ ( A ^o X ) =/= (/) ) -> E! a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 183 |
|
opeq1 |
|- ( y = d -> <. y , z >. = <. d , z >. ) |
| 184 |
183
|
eqeq2d |
|- ( y = d -> ( w = <. y , z >. <-> w = <. d , z >. ) ) |
| 185 |
|
oveq2 |
|- ( y = d -> ( ( A ^o X ) .o y ) = ( ( A ^o X ) .o d ) ) |
| 186 |
185
|
oveq1d |
|- ( y = d -> ( ( ( A ^o X ) .o y ) +o z ) = ( ( ( A ^o X ) .o d ) +o z ) ) |
| 187 |
186
|
eqeq1d |
|- ( y = d -> ( ( ( ( A ^o X ) .o y ) +o z ) = B <-> ( ( ( A ^o X ) .o d ) +o z ) = B ) ) |
| 188 |
184 187
|
anbi12d |
|- ( y = d -> ( ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> ( w = <. d , z >. /\ ( ( ( A ^o X ) .o d ) +o z ) = B ) ) ) |
| 189 |
|
opeq2 |
|- ( z = e -> <. d , z >. = <. d , e >. ) |
| 190 |
189
|
eqeq2d |
|- ( z = e -> ( w = <. d , z >. <-> w = <. d , e >. ) ) |
| 191 |
|
oveq2 |
|- ( z = e -> ( ( ( A ^o X ) .o d ) +o z ) = ( ( ( A ^o X ) .o d ) +o e ) ) |
| 192 |
191
|
eqeq1d |
|- ( z = e -> ( ( ( ( A ^o X ) .o d ) +o z ) = B <-> ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 193 |
190 192
|
anbi12d |
|- ( z = e -> ( ( w = <. d , z >. /\ ( ( ( A ^o X ) .o d ) +o z ) = B ) <-> ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 194 |
188 193
|
cbvrex2vw |
|- ( E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 195 |
|
eqeq1 |
|- ( w = a -> ( w = <. d , e >. <-> a = <. d , e >. ) ) |
| 196 |
195
|
anbi1d |
|- ( w = a -> ( ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) <-> ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 197 |
196
|
2rexbidv |
|- ( w = a -> ( E. d e. On E. e e. ( A ^o X ) ( w = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 198 |
194 197
|
bitrid |
|- ( w = a -> ( E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) <-> E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) ) |
| 199 |
198
|
cbviotavw |
|- ( iota w E. y e. On E. z e. ( A ^o X ) ( w = <. y , z >. /\ ( ( ( A ^o X ) .o y ) +o z ) = B ) ) = ( iota a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 200 |
2 199
|
eqtri |
|- P = ( iota a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) ) |
| 201 |
|
oveq2 |
|- ( d = D -> ( ( A ^o X ) .o d ) = ( ( A ^o X ) .o D ) ) |
| 202 |
201
|
oveq1d |
|- ( d = D -> ( ( ( A ^o X ) .o d ) +o e ) = ( ( ( A ^o X ) .o D ) +o e ) ) |
| 203 |
202
|
eqeq1d |
|- ( d = D -> ( ( ( ( A ^o X ) .o d ) +o e ) = B <-> ( ( ( A ^o X ) .o D ) +o e ) = B ) ) |
| 204 |
|
oveq2 |
|- ( e = E -> ( ( ( A ^o X ) .o D ) +o e ) = ( ( ( A ^o X ) .o D ) +o E ) ) |
| 205 |
204
|
eqeq1d |
|- ( e = E -> ( ( ( ( A ^o X ) .o D ) +o e ) = B <-> ( ( ( A ^o X ) .o D ) +o E ) = B ) ) |
| 206 |
200 3 4 203 205
|
opiota |
|- ( E! a E. d e. On E. e e. ( A ^o X ) ( a = <. d , e >. /\ ( ( ( A ^o X ) .o d ) +o e ) = B ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 207 |
182 206
|
syl |
|- ( ( ( A ^o X ) e. On /\ B e. On /\ ( A ^o X ) =/= (/) ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 208 |
178 143 181 207
|
syl3anc |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( D e. On /\ E e. ( A ^o X ) /\ ( ( ( A ^o X ) .o D ) +o E ) = B ) <-> ( D = Y /\ E = Z ) ) ) |
| 209 |
177 208
|
sylan9bbr |
|- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ C = X ) -> ( ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( D = Y /\ E = Z ) ) ) |
| 210 |
209
|
pm5.32da |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( C = X /\ ( D e. On /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) ) |
| 211 |
169 210
|
bitrd |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) ) |
| 212 |
|
3an4anass |
|- ( ( ( C e. On /\ D e. ( A \ 1o ) /\ E e. ( A ^o C ) ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( ( C e. On /\ D e. ( A \ 1o ) ) /\ ( E e. ( A ^o C ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) ) ) |
| 213 |
|
3anass |
|- ( ( C = X /\ D = Y /\ E = Z ) <-> ( C = X /\ ( D = Y /\ E = Z ) ) ) |
| 214 |
211 212 213
|
3bitr4g |
|- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( ( C e. On /\ D e. ( A \ 1o ) /\ E e. ( A ^o C ) ) /\ ( ( ( A ^o C ) .o D ) +o E ) = B ) <-> ( C = X /\ D = Y /\ E = Z ) ) ) |