Step |
Hyp |
Ref |
Expression |
1 |
|
oeeu.1 |
⊢ 𝑋 = ∪ ∩ { 𝑥 ∈ On ∣ 𝐵 ∈ ( 𝐴 ↑o 𝑥 ) } |
2 |
|
oeeu.2 |
⊢ 𝑃 = ( ℩ 𝑤 ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) |
3 |
|
oeeu.3 |
⊢ 𝑌 = ( 1st ‘ 𝑃 ) |
4 |
|
oeeu.4 |
⊢ 𝑍 = ( 2nd ‘ 𝑃 ) |
5 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐴 ∈ On ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐴 ∈ On ) |
8 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ∈ On ) |
9 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
11 |
|
om1 |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) = ( 𝐴 ↑o 𝐶 ) ) |
13 |
|
df1o2 |
⊢ 1o = { ∅ } |
14 |
|
dif1o |
⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝐷 ∈ 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
15 |
14
|
simprbi |
⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) → 𝐷 ≠ ∅ ) |
16 |
15
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ≠ ∅ ) |
17 |
|
eldifi |
⊢ ( 𝐷 ∈ ( 𝐴 ∖ 1o ) → 𝐷 ∈ 𝐴 ) |
18 |
17
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ∈ 𝐴 ) |
19 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ 𝐴 ) → 𝐷 ∈ On ) |
20 |
7 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐷 ∈ On ) |
21 |
|
on0eln0 |
⊢ ( 𝐷 ∈ On → ( ∅ ∈ 𝐷 ↔ 𝐷 ≠ ∅ ) ) |
22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ∅ ∈ 𝐷 ↔ 𝐷 ≠ ∅ ) ) |
23 |
16 22
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ 𝐷 ) |
24 |
23
|
snssd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → { ∅ } ⊆ 𝐷 ) |
25 |
13 24
|
eqsstrid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 1o ⊆ 𝐷 ) |
26 |
|
1on |
⊢ 1o ∈ On |
27 |
26
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 1o ∈ On ) |
28 |
|
omwordi |
⊢ ( ( 1o ∈ On ∧ 𝐷 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) → ( 1o ⊆ 𝐷 → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) ) |
29 |
27 20 10 28
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 1o ⊆ 𝐷 → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) ) |
30 |
25 29
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) |
31 |
12 30
|
eqsstrrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ) |
32 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) |
33 |
10 20 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) |
34 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) |
35 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) → 𝐸 ∈ On ) |
36 |
10 34 35
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐸 ∈ On ) |
37 |
|
oaword1 |
⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) |
38 |
33 36 37
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) |
39 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) |
40 |
38 39
|
sseqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ) |
41 |
31 40
|
sstrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ) |
42 |
1
|
oeeulem |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝑋 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
43 |
42
|
simp3d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
45 |
42
|
simp1d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝑋 ∈ On ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ∈ On ) |
47 |
|
suceloni |
⊢ ( 𝑋 ∈ On → suc 𝑋 ∈ On ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝑋 ∈ On ) |
49 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝑋 ∈ On ) → ( 𝐴 ↑o suc 𝑋 ) ∈ On ) |
50 |
7 48 49
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝑋 ) ∈ On ) |
51 |
|
ontr2 |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ ( 𝐴 ↑o suc 𝑋 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
52 |
10 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
53 |
41 44 52
|
mp2and |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
54 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐴 ∈ ( On ∖ 2o ) ) |
55 |
|
oeord |
⊢ ( ( 𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐶 ∈ suc 𝑋 ↔ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
56 |
8 48 54 55
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 ∈ suc 𝑋 ↔ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o suc 𝑋 ) ) ) |
57 |
53 56
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ∈ suc 𝑋 ) |
58 |
|
onsssuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋 ) ) |
59 |
8 46 58
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋 ) ) |
60 |
57 59
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 ⊆ 𝑋 ) |
61 |
42
|
simp2d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
63 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
64 |
7 63
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → Ord 𝐴 ) |
65 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( 𝐷 ∈ 𝐴 → suc 𝐷 ⊆ 𝐴 ) ) |
66 |
64 18 65
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐷 ⊆ 𝐴 ) |
67 |
|
suceloni |
⊢ ( 𝐷 ∈ On → suc 𝐷 ∈ On ) |
68 |
20 67
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐷 ∈ On ) |
69 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
70 |
54 69
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ 𝐴 ) |
71 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
72 |
7 8 70 71
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
73 |
|
omword |
⊢ ( ( ( suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) → ( suc 𝐷 ⊆ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
74 |
68 7 10 72 73
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( suc 𝐷 ⊆ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
75 |
66 74
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ⊆ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
76 |
|
oaord |
⊢ ( ( 𝐸 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ∧ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) ) |
77 |
36 10 33 76
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) ) |
78 |
34 77
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
79 |
39 78
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
80 |
|
odi |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) ) |
81 |
10 20 27 80
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) ) |
82 |
|
oa1suc |
⊢ ( 𝐷 ∈ On → ( 𝐷 +o 1o ) = suc 𝐷 ) |
83 |
20 82
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐷 +o 1o ) = suc 𝐷 ) |
84 |
83
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐷 +o 1o ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ) |
85 |
12
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( ( 𝐴 ↑o 𝐶 ) ·o 1o ) ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
86 |
81 84 85
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o ( 𝐴 ↑o 𝐶 ) ) ) |
87 |
79 86
|
eleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o suc 𝐷 ) ) |
88 |
75 87
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
89 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
90 |
7 8 89
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
91 |
88 90
|
eleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) |
92 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
93 |
7 46 92
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
94 |
|
suceloni |
⊢ ( 𝐶 ∈ On → suc 𝐶 ∈ On ) |
95 |
94
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → suc 𝐶 ∈ On ) |
96 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) ∈ On ) |
97 |
7 95 96
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ On ) |
98 |
|
ontr2 |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐴 ↑o suc 𝐶 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
99 |
93 97 98
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
100 |
62 91 99
|
mp2and |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) |
101 |
|
oeord |
⊢ ( ( 𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑋 ∈ suc 𝐶 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
102 |
46 95 54 101
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝑋 ∈ suc 𝐶 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o suc 𝐶 ) ) ) |
103 |
100 102
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ∈ suc 𝐶 ) |
104 |
|
onsssuc |
⊢ ( ( 𝑋 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶 ) ) |
105 |
46 8 104
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶 ) ) |
106 |
103 105
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝑋 ⊆ 𝐶 ) |
107 |
60 106
|
eqssd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → 𝐶 = 𝑋 ) |
108 |
107 20
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) → ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) |
109 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐶 = 𝑋 ) |
110 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝑋 ∈ On ) |
111 |
109 110
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
112 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐴 ∈ On ) |
113 |
112 111 9
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
114 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ On ) |
115 |
113 114 32
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ) |
116 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) |
117 |
113 116 35
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐸 ∈ On ) |
118 |
115 117 37
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ) |
119 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) |
120 |
118 119
|
sseqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ) |
121 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ ( 𝐴 ↑o suc 𝑋 ) ) |
122 |
|
suceq |
⊢ ( 𝐶 = 𝑋 → suc 𝐶 = suc 𝑋 ) |
123 |
122
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → suc 𝐶 = suc 𝑋 ) |
124 |
123
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( 𝐴 ↑o suc 𝑋 ) ) |
125 |
112 111 89
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
126 |
124 125
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o suc 𝑋 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
127 |
121 126
|
eleqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
128 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) |
129 |
113 112 128
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) |
130 |
|
ontr2 |
⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ On ∧ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ∈ On ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
131 |
115 129 130
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ⊆ 𝐵 ∧ 𝐵 ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
132 |
120 127 131
|
mp2and |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
133 |
69
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∅ ∈ 𝐴 ) |
134 |
133
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ∅ ∈ 𝐴 ) |
135 |
112 111 134 71
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
136 |
|
omord2 |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) → ( 𝐷 ∈ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
137 |
114 112 113 135 136
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 ∈ 𝐴 ↔ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) ∈ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
138 |
132 137
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ 𝐴 ) |
139 |
109
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) = ( 𝐴 ↑o 𝑋 ) ) |
140 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐵 ) |
141 |
139 140
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ) |
142 |
|
eldifi |
⊢ ( 𝐵 ∈ ( On ∖ 1o ) → 𝐵 ∈ On ) |
143 |
142
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → 𝐵 ∈ On ) |
144 |
143
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ On ) |
145 |
|
ontri1 |
⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
146 |
113 144 145
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
147 |
141 146
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) |
148 |
|
om0 |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
149 |
113 148
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
150 |
149
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) = ( ∅ +o 𝐸 ) ) |
151 |
|
oa0r |
⊢ ( 𝐸 ∈ On → ( ∅ +o 𝐸 ) = 𝐸 ) |
152 |
117 151
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ∅ +o 𝐸 ) = 𝐸 ) |
153 |
150 152
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) = 𝐸 ) |
154 |
153 116
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
155 |
|
oveq2 |
⊢ ( 𝐷 = ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) = ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ) |
156 |
155
|
oveq1d |
⊢ ( 𝐷 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ) |
157 |
156
|
eleq1d |
⊢ ( 𝐷 = ∅ → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ( ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
158 |
154 157
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
159 |
119
|
eleq1d |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
160 |
158 159
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐷 = ∅ → 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
161 |
160
|
necon3bd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( ¬ 𝐵 ∈ ( 𝐴 ↑o 𝐶 ) → 𝐷 ≠ ∅ ) ) |
162 |
147 161
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ≠ ∅ ) |
163 |
138 162 14
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ ( 𝐴 ∖ 1o ) ) |
164 |
111 163
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ∧ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ) |
165 |
108 164
|
impbida |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) → ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) ) |
166 |
165
|
ex |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) → ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ) ) ) |
167 |
166
|
pm5.32rd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) |
168 |
|
anass |
⊢ ( ( ( 𝐶 = 𝑋 ∧ 𝐷 ∈ On ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) |
169 |
167 168
|
bitrdi |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ) ) |
170 |
|
3anass |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
171 |
|
oveq2 |
⊢ ( 𝐶 = 𝑋 → ( 𝐴 ↑o 𝐶 ) = ( 𝐴 ↑o 𝑋 ) ) |
172 |
171
|
eleq2d |
⊢ ( 𝐶 = 𝑋 → ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ↔ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
173 |
171
|
oveq1d |
⊢ ( 𝐶 = 𝑋 → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) ) |
174 |
173
|
oveq1d |
⊢ ( 𝐶 = 𝑋 → ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) ) |
175 |
174
|
eqeq1d |
⊢ ( 𝐶 = 𝑋 → ( ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) |
176 |
172 175
|
3anbi23d |
⊢ ( 𝐶 = 𝑋 → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
177 |
170 176
|
bitr3id |
⊢ ( 𝐶 = 𝑋 → ( ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
178 |
6 45 92
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
179 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝑋 ) ) |
180 |
6 45 133 179
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ∅ ∈ ( 𝐴 ↑o 𝑋 ) ) |
181 |
180
|
ne0d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) |
182 |
|
omeu |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) → ∃! 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
183 |
|
opeq1 |
⊢ ( 𝑦 = 𝑑 → 〈 𝑦 , 𝑧 〉 = 〈 𝑑 , 𝑧 〉 ) |
184 |
183
|
eqeq2d |
⊢ ( 𝑦 = 𝑑 → ( 𝑤 = 〈 𝑦 , 𝑧 〉 ↔ 𝑤 = 〈 𝑑 , 𝑧 〉 ) ) |
185 |
|
oveq2 |
⊢ ( 𝑦 = 𝑑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) ) |
186 |
185
|
oveq1d |
⊢ ( 𝑦 = 𝑑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) ) |
187 |
186
|
eqeq1d |
⊢ ( 𝑦 = 𝑑 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ) |
188 |
184 187
|
anbi12d |
⊢ ( 𝑦 = 𝑑 → ( ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑤 = 〈 𝑑 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ) ) |
189 |
|
opeq2 |
⊢ ( 𝑧 = 𝑒 → 〈 𝑑 , 𝑧 〉 = 〈 𝑑 , 𝑒 〉 ) |
190 |
189
|
eqeq2d |
⊢ ( 𝑧 = 𝑒 → ( 𝑤 = 〈 𝑑 , 𝑧 〉 ↔ 𝑤 = 〈 𝑑 , 𝑒 〉 ) ) |
191 |
|
oveq2 |
⊢ ( 𝑧 = 𝑒 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) ) |
192 |
191
|
eqeq1d |
⊢ ( 𝑧 = 𝑒 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
193 |
190 192
|
anbi12d |
⊢ ( 𝑧 = 𝑒 → ( ( 𝑤 = 〈 𝑑 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑧 ) = 𝐵 ) ↔ ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
194 |
188 193
|
cbvrex2vw |
⊢ ( ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
195 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑎 → ( 𝑤 = 〈 𝑑 , 𝑒 〉 ↔ 𝑎 = 〈 𝑑 , 𝑒 〉 ) ) |
196 |
195
|
anbi1d |
⊢ ( 𝑤 = 𝑎 → ( ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ↔ ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
197 |
196
|
2rexbidv |
⊢ ( 𝑤 = 𝑎 → ( ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
198 |
194 197
|
bitrid |
⊢ ( 𝑤 = 𝑎 → ( ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ↔ ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) ) |
199 |
198
|
cbviotavw |
⊢ ( ℩ 𝑤 ∃ 𝑦 ∈ On ∃ 𝑧 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑦 ) +o 𝑧 ) = 𝐵 ) ) = ( ℩ 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
200 |
2 199
|
eqtri |
⊢ 𝑃 = ( ℩ 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) ) |
201 |
|
oveq2 |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) ) |
202 |
201
|
oveq1d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) ) |
203 |
202
|
eqeq1d |
⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = 𝐵 ) ) |
204 |
|
oveq2 |
⊢ ( 𝑒 = 𝐸 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) ) |
205 |
204
|
eqeq1d |
⊢ ( 𝑒 = 𝐸 → ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝑒 ) = 𝐵 ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) |
206 |
200 3 4 203 205
|
opiota |
⊢ ( ∃! 𝑎 ∃ 𝑑 ∈ On ∃ 𝑒 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑎 = 〈 𝑑 , 𝑒 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑑 ) +o 𝑒 ) = 𝐵 ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
207 |
182 206
|
syl |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ≠ ∅ ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
208 |
178 143 181 207
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐷 ∈ On ∧ 𝐸 ∈ ( 𝐴 ↑o 𝑋 ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
209 |
177 208
|
sylan9bbr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) ∧ 𝐶 = 𝑋 ) → ( ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
210 |
209
|
pm5.32da |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( 𝐶 = 𝑋 ∧ ( 𝐷 ∈ On ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) ) |
211 |
169 210
|
bitrd |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) ) |
212 |
|
3an4anass |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ) ∧ ( 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ) ) |
213 |
|
3anass |
⊢ ( ( 𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ↔ ( 𝐶 = 𝑋 ∧ ( 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |
214 |
211 212 213
|
3bitr4g |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ ( On ∖ 1o ) ) → ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ( 𝐴 ∖ 1o ) ∧ 𝐸 ∈ ( 𝐴 ↑o 𝐶 ) ) ∧ ( ( ( 𝐴 ↑o 𝐶 ) ·o 𝐷 ) +o 𝐸 ) = 𝐵 ) ↔ ( 𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍 ) ) ) |