| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catcoppccl.c |  |-  C = ( CatCat ` U ) | 
						
							| 2 |  | catcoppccl.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | catcoppccl.o |  |-  O = ( oppCat ` X ) | 
						
							| 4 |  | catcoppccl.1 |  |-  ( ph -> U e. WUni ) | 
						
							| 5 |  | catcoppccl.2 |  |-  ( ph -> _om e. U ) | 
						
							| 6 |  | catcoppccl.3 |  |-  ( ph -> X e. B ) | 
						
							| 7 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 8 |  | eqid |  |-  ( Hom ` X ) = ( Hom ` X ) | 
						
							| 9 |  | eqid |  |-  ( comp ` X ) = ( comp ` X ) | 
						
							| 10 | 7 8 9 3 | oppcval |  |-  ( X e. B -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( ph -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) ) | 
						
							| 12 | 1 2 4 6 | catcbascl |  |-  ( ph -> X e. U ) | 
						
							| 13 |  | homid |  |-  Hom = Slot ( Hom ` ndx ) | 
						
							| 14 | 4 5 | wunndx |  |-  ( ph -> ndx e. U ) | 
						
							| 15 | 13 4 14 | wunstr |  |-  ( ph -> ( Hom ` ndx ) e. U ) | 
						
							| 16 | 1 2 4 6 | catchomcl |  |-  ( ph -> ( Hom ` X ) e. U ) | 
						
							| 17 | 4 16 | wuntpos |  |-  ( ph -> tpos ( Hom ` X ) e. U ) | 
						
							| 18 | 4 15 17 | wunop |  |-  ( ph -> <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. e. U ) | 
						
							| 19 | 4 12 18 | wunsets |  |-  ( ph -> ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) e. U ) | 
						
							| 20 |  | ccoid |  |-  comp = Slot ( comp ` ndx ) | 
						
							| 21 | 20 4 14 | wunstr |  |-  ( ph -> ( comp ` ndx ) e. U ) | 
						
							| 22 | 1 2 4 6 | catcbaselcl |  |-  ( ph -> ( Base ` X ) e. U ) | 
						
							| 23 | 4 22 22 | wunxp |  |-  ( ph -> ( ( Base ` X ) X. ( Base ` X ) ) e. U ) | 
						
							| 24 | 4 23 22 | wunxp |  |-  ( ph -> ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) e. U ) | 
						
							| 25 | 1 2 4 6 | catcccocl |  |-  ( ph -> ( comp ` X ) e. U ) | 
						
							| 26 | 4 25 | wunrn |  |-  ( ph -> ran ( comp ` X ) e. U ) | 
						
							| 27 | 4 26 | wununi |  |-  ( ph -> U. ran ( comp ` X ) e. U ) | 
						
							| 28 | 4 27 | wundm |  |-  ( ph -> dom U. ran ( comp ` X ) e. U ) | 
						
							| 29 | 4 28 | wuncnv |  |-  ( ph -> `' dom U. ran ( comp ` X ) e. U ) | 
						
							| 30 | 4 | wun0 |  |-  ( ph -> (/) e. U ) | 
						
							| 31 | 4 30 | wunsn |  |-  ( ph -> { (/) } e. U ) | 
						
							| 32 | 4 29 31 | wunun |  |-  ( ph -> ( `' dom U. ran ( comp ` X ) u. { (/) } ) e. U ) | 
						
							| 33 | 4 27 | wunrn |  |-  ( ph -> ran U. ran ( comp ` X ) e. U ) | 
						
							| 34 | 4 32 33 | wunxp |  |-  ( ph -> ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) | 
						
							| 35 | 4 34 | wunpw |  |-  ( ph -> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) | 
						
							| 36 |  | tposssxp |  |-  tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) | 
						
							| 37 |  | ovssunirn |  |-  ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X ) | 
						
							| 38 |  | dmss |  |-  ( ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X ) -> dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) | 
						
							| 40 |  | cnvss |  |-  ( dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) -> `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) ) | 
						
							| 41 |  | unss1 |  |-  ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) -> ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) ) | 
						
							| 42 | 39 40 41 | mp2b |  |-  ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) | 
						
							| 43 | 37 | rnssi |  |-  ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X ) | 
						
							| 44 |  | xpss12 |  |-  ( ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) /\ ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X ) ) -> ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 45 | 42 43 44 | mp2an |  |-  ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) | 
						
							| 46 | 36 45 | sstri |  |-  tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) | 
						
							| 47 |  | elpw2g |  |-  ( ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) | 
						
							| 48 | 34 47 | syl |  |-  ( ph -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) | 
						
							| 49 | 46 48 | mpbiri |  |-  ( ph -> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 50 | 49 | ralrimivw |  |-  ( ph -> A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 51 | 50 | ralrimivw |  |-  ( ph -> A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 52 |  | eqid |  |-  ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) = ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) | 
						
							| 53 | 52 | fmpo |  |-  ( A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 54 | 51 53 | sylib |  |-  ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
							| 55 | 4 24 35 54 | wunf |  |-  ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) e. U ) | 
						
							| 56 | 4 21 55 | wunop |  |-  ( ph -> <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. e. U ) | 
						
							| 57 | 4 19 56 | wunsets |  |-  ( ph -> ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) e. U ) | 
						
							| 58 | 11 57 | eqeltrd |  |-  ( ph -> O e. U ) | 
						
							| 59 | 1 2 4 | catcbas |  |-  ( ph -> B = ( U i^i Cat ) ) | 
						
							| 60 | 6 59 | eleqtrd |  |-  ( ph -> X e. ( U i^i Cat ) ) | 
						
							| 61 | 60 | elin2d |  |-  ( ph -> X e. Cat ) | 
						
							| 62 | 3 | oppccat |  |-  ( X e. Cat -> O e. Cat ) | 
						
							| 63 | 61 62 | syl |  |-  ( ph -> O e. Cat ) | 
						
							| 64 | 58 63 | elind |  |-  ( ph -> O e. ( U i^i Cat ) ) | 
						
							| 65 | 64 59 | eleqtrrd |  |-  ( ph -> O e. B ) |