| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccatws1f1olast.1 |
|- N = ( # ` W ) |
| 2 |
|
ccatws1f1olast.3 |
|- ( ph -> W e. Word S ) |
| 3 |
|
ccatws1f1olast.4 |
|- ( ph -> X e. S ) |
| 4 |
|
ccatws1f1olast.5 |
|- ( ph -> T : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) ) |
| 5 |
|
lencl |
|- ( W e. Word S -> ( # ` W ) e. NN0 ) |
| 6 |
2 5
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
| 7 |
1 6
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
| 8 |
|
fzossfzop1 |
|- ( N e. NN0 -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
| 10 |
|
sswrd |
|- ( ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) -> Word ( 0 ..^ N ) C_ Word ( 0 ..^ ( N + 1 ) ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> Word ( 0 ..^ N ) C_ Word ( 0 ..^ ( N + 1 ) ) ) |
| 12 |
|
f1of |
|- ( T : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) -> T : ( 0 ..^ N ) --> ( 0 ..^ N ) ) |
| 13 |
4 12
|
syl |
|- ( ph -> T : ( 0 ..^ N ) --> ( 0 ..^ N ) ) |
| 14 |
|
iswrdi |
|- ( T : ( 0 ..^ N ) --> ( 0 ..^ N ) -> T e. Word ( 0 ..^ N ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> T e. Word ( 0 ..^ N ) ) |
| 16 |
11 15
|
sseldd |
|- ( ph -> T e. Word ( 0 ..^ ( N + 1 ) ) ) |
| 17 |
|
fzonn0p1 |
|- ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 18 |
7 17
|
syl |
|- ( ph -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 19 |
18
|
s1cld |
|- ( ph -> <" N "> e. Word ( 0 ..^ ( N + 1 ) ) ) |
| 20 |
1
|
oveq1i |
|- ( N + 1 ) = ( ( # ` W ) + 1 ) |
| 21 |
|
ccatws1len |
|- ( W e. Word S -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
| 22 |
2 21
|
syl |
|- ( ph -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
| 23 |
20 22
|
eqtr4id |
|- ( ph -> ( N + 1 ) = ( # ` ( W ++ <" X "> ) ) ) |
| 24 |
|
ccatws1cl |
|- ( ( W e. Word S /\ X e. S ) -> ( W ++ <" X "> ) e. Word S ) |
| 25 |
2 3 24
|
syl2anc |
|- ( ph -> ( W ++ <" X "> ) e. Word S ) |
| 26 |
23 25
|
wrdfd |
|- ( ph -> ( W ++ <" X "> ) : ( 0 ..^ ( N + 1 ) ) --> S ) |
| 27 |
|
ccatco |
|- ( ( T e. Word ( 0 ..^ ( N + 1 ) ) /\ <" N "> e. Word ( 0 ..^ ( N + 1 ) ) /\ ( W ++ <" X "> ) : ( 0 ..^ ( N + 1 ) ) --> S ) -> ( ( W ++ <" X "> ) o. ( T ++ <" N "> ) ) = ( ( ( W ++ <" X "> ) o. T ) ++ ( ( W ++ <" X "> ) o. <" N "> ) ) ) |
| 28 |
16 19 26 27
|
syl3anc |
|- ( ph -> ( ( W ++ <" X "> ) o. ( T ++ <" N "> ) ) = ( ( ( W ++ <" X "> ) o. T ) ++ ( ( W ++ <" X "> ) o. <" N "> ) ) ) |
| 29 |
13
|
frnd |
|- ( ph -> ran T C_ ( 0 ..^ N ) ) |
| 30 |
|
cores |
|- ( ran T C_ ( 0 ..^ N ) -> ( ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) o. T ) = ( ( W ++ <" X "> ) o. T ) ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) o. T ) = ( ( W ++ <" X "> ) o. T ) ) |
| 32 |
1
|
a1i |
|- ( ph -> N = ( # ` W ) ) |
| 33 |
32
|
oveq2d |
|- ( ph -> ( ( W ++ <" X "> ) prefix N ) = ( ( W ++ <" X "> ) prefix ( # ` W ) ) ) |
| 34 |
|
fzossfz |
|- ( 0 ..^ ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
| 35 |
20
|
a1i |
|- ( ph -> ( N + 1 ) = ( ( # ` W ) + 1 ) ) |
| 36 |
35
|
oveq2d |
|- ( ph -> ( 0 ... ( N + 1 ) ) = ( 0 ... ( ( # ` W ) + 1 ) ) ) |
| 37 |
34 36
|
sseqtrid |
|- ( ph -> ( 0 ..^ ( N + 1 ) ) C_ ( 0 ... ( ( # ` W ) + 1 ) ) ) |
| 38 |
37 18
|
sseldd |
|- ( ph -> N e. ( 0 ... ( ( # ` W ) + 1 ) ) ) |
| 39 |
22
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` ( W ++ <" X "> ) ) ) = ( 0 ... ( ( # ` W ) + 1 ) ) ) |
| 40 |
38 39
|
eleqtrrd |
|- ( ph -> N e. ( 0 ... ( # ` ( W ++ <" X "> ) ) ) ) |
| 41 |
|
pfxres |
|- ( ( ( W ++ <" X "> ) e. Word S /\ N e. ( 0 ... ( # ` ( W ++ <" X "> ) ) ) ) -> ( ( W ++ <" X "> ) prefix N ) = ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) ) |
| 42 |
25 40 41
|
syl2anc |
|- ( ph -> ( ( W ++ <" X "> ) prefix N ) = ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) ) |
| 43 |
3
|
s1cld |
|- ( ph -> <" X "> e. Word S ) |
| 44 |
|
pfxccat1 |
|- ( ( W e. Word S /\ <" X "> e. Word S ) -> ( ( W ++ <" X "> ) prefix ( # ` W ) ) = W ) |
| 45 |
2 43 44
|
syl2anc |
|- ( ph -> ( ( W ++ <" X "> ) prefix ( # ` W ) ) = W ) |
| 46 |
33 42 45
|
3eqtr3d |
|- ( ph -> ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) = W ) |
| 47 |
46
|
coeq1d |
|- ( ph -> ( ( ( W ++ <" X "> ) |` ( 0 ..^ N ) ) o. T ) = ( W o. T ) ) |
| 48 |
31 47
|
eqtr3d |
|- ( ph -> ( ( W ++ <" X "> ) o. T ) = ( W o. T ) ) |
| 49 |
|
s1co |
|- ( ( N e. ( 0 ..^ ( N + 1 ) ) /\ ( W ++ <" X "> ) : ( 0 ..^ ( N + 1 ) ) --> S ) -> ( ( W ++ <" X "> ) o. <" N "> ) = <" ( ( W ++ <" X "> ) ` N ) "> ) |
| 50 |
18 26 49
|
syl2anc |
|- ( ph -> ( ( W ++ <" X "> ) o. <" N "> ) = <" ( ( W ++ <" X "> ) ` N ) "> ) |
| 51 |
|
ccats1val2 |
|- ( ( W e. Word S /\ X e. S /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
| 52 |
2 3 32 51
|
syl3anc |
|- ( ph -> ( ( W ++ <" X "> ) ` N ) = X ) |
| 53 |
52
|
s1eqd |
|- ( ph -> <" ( ( W ++ <" X "> ) ` N ) "> = <" X "> ) |
| 54 |
50 53
|
eqtrd |
|- ( ph -> ( ( W ++ <" X "> ) o. <" N "> ) = <" X "> ) |
| 55 |
48 54
|
oveq12d |
|- ( ph -> ( ( ( W ++ <" X "> ) o. T ) ++ ( ( W ++ <" X "> ) o. <" N "> ) ) = ( ( W o. T ) ++ <" X "> ) ) |
| 56 |
28 55
|
eqtrd |
|- ( ph -> ( ( W ++ <" X "> ) o. ( T ++ <" N "> ) ) = ( ( W o. T ) ++ <" X "> ) ) |