| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdt2ind.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
| 2 |
|
wrdt2ind.2 |
|- ( x = y -> ( ph <-> ch ) ) |
| 3 |
|
wrdt2ind.3 |
|- ( x = ( y ++ <" i j "> ) -> ( ph <-> th ) ) |
| 4 |
|
wrdt2ind.4 |
|- ( x = A -> ( ph <-> ta ) ) |
| 5 |
|
wrdt2ind.5 |
|- ps |
| 6 |
|
wrdt2ind.6 |
|- ( ( y e. Word B /\ i e. B /\ j e. B ) -> ( ch -> th ) ) |
| 7 |
|
oveq2 |
|- ( n = 0 -> ( 2 x. n ) = ( 2 x. 0 ) ) |
| 8 |
7
|
eqeq1d |
|- ( n = 0 -> ( ( 2 x. n ) = ( # ` x ) <-> ( 2 x. 0 ) = ( # ` x ) ) ) |
| 9 |
8
|
imbi1d |
|- ( n = 0 -> ( ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> ( ( 2 x. 0 ) = ( # ` x ) -> ph ) ) ) |
| 10 |
9
|
ralbidv |
|- ( n = 0 -> ( A. x e. Word B ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> A. x e. Word B ( ( 2 x. 0 ) = ( # ` x ) -> ph ) ) ) |
| 11 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
| 12 |
11
|
eqeq1d |
|- ( n = k -> ( ( 2 x. n ) = ( # ` x ) <-> ( 2 x. k ) = ( # ` x ) ) ) |
| 13 |
12
|
imbi1d |
|- ( n = k -> ( ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> ( ( 2 x. k ) = ( # ` x ) -> ph ) ) ) |
| 14 |
13
|
ralbidv |
|- ( n = k -> ( A. x e. Word B ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> A. x e. Word B ( ( 2 x. k ) = ( # ` x ) -> ph ) ) ) |
| 15 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( 2 x. n ) = ( 2 x. ( k + 1 ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( n = ( k + 1 ) -> ( ( 2 x. n ) = ( # ` x ) <-> ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) |
| 17 |
16
|
imbi1d |
|- ( n = ( k + 1 ) -> ( ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) ) |
| 18 |
17
|
ralbidv |
|- ( n = ( k + 1 ) -> ( A. x e. Word B ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> A. x e. Word B ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) ) |
| 19 |
|
oveq2 |
|- ( n = m -> ( 2 x. n ) = ( 2 x. m ) ) |
| 20 |
19
|
eqeq1d |
|- ( n = m -> ( ( 2 x. n ) = ( # ` x ) <-> ( 2 x. m ) = ( # ` x ) ) ) |
| 21 |
20
|
imbi1d |
|- ( n = m -> ( ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> ( ( 2 x. m ) = ( # ` x ) -> ph ) ) ) |
| 22 |
21
|
ralbidv |
|- ( n = m -> ( A. x e. Word B ( ( 2 x. n ) = ( # ` x ) -> ph ) <-> A. x e. Word B ( ( 2 x. m ) = ( # ` x ) -> ph ) ) ) |
| 23 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 24 |
23
|
eqeq1i |
|- ( ( 2 x. 0 ) = ( # ` x ) <-> 0 = ( # ` x ) ) |
| 25 |
|
eqcom |
|- ( 0 = ( # ` x ) <-> ( # ` x ) = 0 ) |
| 26 |
24 25
|
bitri |
|- ( ( 2 x. 0 ) = ( # ` x ) <-> ( # ` x ) = 0 ) |
| 27 |
|
hasheq0 |
|- ( x e. Word B -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
| 28 |
26 27
|
bitrid |
|- ( x e. Word B -> ( ( 2 x. 0 ) = ( # ` x ) <-> x = (/) ) ) |
| 29 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
| 30 |
28 29
|
biimtrdi |
|- ( x e. Word B -> ( ( 2 x. 0 ) = ( # ` x ) -> ph ) ) |
| 31 |
30
|
rgen |
|- A. x e. Word B ( ( 2 x. 0 ) = ( # ` x ) -> ph ) |
| 32 |
|
fveq2 |
|- ( x = y -> ( # ` x ) = ( # ` y ) ) |
| 33 |
32
|
eqeq2d |
|- ( x = y -> ( ( 2 x. k ) = ( # ` x ) <-> ( 2 x. k ) = ( # ` y ) ) ) |
| 34 |
33 2
|
imbi12d |
|- ( x = y -> ( ( ( 2 x. k ) = ( # ` x ) -> ph ) <-> ( ( 2 x. k ) = ( # ` y ) -> ch ) ) ) |
| 35 |
34
|
cbvralvw |
|- ( A. x e. Word B ( ( 2 x. k ) = ( # ` x ) -> ph ) <-> A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) |
| 36 |
|
simprl |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> x e. Word B ) |
| 37 |
|
0zd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 e. ZZ ) |
| 38 |
|
lencl |
|- ( x e. Word B -> ( # ` x ) e. NN0 ) |
| 39 |
36 38
|
syl |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) e. NN0 ) |
| 40 |
39
|
nn0zd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) e. ZZ ) |
| 41 |
|
2z |
|- 2 e. ZZ |
| 42 |
41
|
a1i |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 e. ZZ ) |
| 43 |
40 42
|
zsubcld |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) e. ZZ ) |
| 44 |
|
2re |
|- 2 e. RR |
| 45 |
44
|
a1i |
|- ( k e. NN0 -> 2 e. RR ) |
| 46 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 47 |
|
0le2 |
|- 0 <_ 2 |
| 48 |
47
|
a1i |
|- ( k e. NN0 -> 0 <_ 2 ) |
| 49 |
|
nn0ge0 |
|- ( k e. NN0 -> 0 <_ k ) |
| 50 |
45 46 48 49
|
mulge0d |
|- ( k e. NN0 -> 0 <_ ( 2 x. k ) ) |
| 51 |
50
|
adantr |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 <_ ( 2 x. k ) ) |
| 52 |
|
2cnd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 e. CC ) |
| 53 |
|
simpl |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> k e. NN0 ) |
| 54 |
53
|
nn0cnd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> k e. CC ) |
| 55 |
|
1cnd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 1 e. CC ) |
| 56 |
52 54 55
|
adddid |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
| 57 |
|
simprr |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. ( k + 1 ) ) = ( # ` x ) ) |
| 58 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 59 |
58
|
a1i |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. 1 ) = 2 ) |
| 60 |
59
|
oveq2d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( 2 x. k ) + ( 2 x. 1 ) ) = ( ( 2 x. k ) + 2 ) ) |
| 61 |
56 57 60
|
3eqtr3d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) = ( ( 2 x. k ) + 2 ) ) |
| 62 |
61
|
oveq1d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) = ( ( ( 2 x. k ) + 2 ) - 2 ) ) |
| 63 |
52 54
|
mulcld |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. k ) e. CC ) |
| 64 |
63 52
|
pncand |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( ( 2 x. k ) + 2 ) - 2 ) = ( 2 x. k ) ) |
| 65 |
62 64
|
eqtrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) = ( 2 x. k ) ) |
| 66 |
51 65
|
breqtrrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 <_ ( ( # ` x ) - 2 ) ) |
| 67 |
43
|
zred |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) e. RR ) |
| 68 |
39
|
nn0red |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) e. RR ) |
| 69 |
|
2pos |
|- 0 < 2 |
| 70 |
44
|
a1i |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 e. RR ) |
| 71 |
70 68
|
ltsubposd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 0 < 2 <-> ( ( # ` x ) - 2 ) < ( # ` x ) ) ) |
| 72 |
69 71
|
mpbii |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) < ( # ` x ) ) |
| 73 |
67 68 72
|
ltled |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) <_ ( # ` x ) ) |
| 74 |
37 40 43 66 73
|
elfzd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) e. ( 0 ... ( # ` x ) ) ) |
| 75 |
|
pfxlen |
|- ( ( x e. Word B /\ ( ( # ` x ) - 2 ) e. ( 0 ... ( # ` x ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) = ( ( # ` x ) - 2 ) ) |
| 76 |
36 74 75
|
syl2anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) = ( ( # ` x ) - 2 ) ) |
| 77 |
76 65
|
eqtr2d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. k ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) ) |
| 78 |
77
|
adantlr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. k ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) ) |
| 79 |
|
fveq2 |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( # ` y ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) ) |
| 80 |
79
|
eqeq2d |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( ( 2 x. k ) = ( # ` y ) <-> ( 2 x. k ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) ) ) |
| 81 |
|
vex |
|- y e. _V |
| 82 |
81 2
|
sbcie |
|- ( [. y / x ]. ph <-> ch ) |
| 83 |
|
dfsbcq |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( [. y / x ]. ph <-> [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph ) ) |
| 84 |
82 83
|
bitr3id |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( ch <-> [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph ) ) |
| 85 |
80 84
|
imbi12d |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( ( ( 2 x. k ) = ( # ` y ) -> ch ) <-> ( ( 2 x. k ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) -> [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph ) ) ) |
| 86 |
|
simplr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) |
| 87 |
|
pfxcl |
|- ( x e. Word B -> ( x prefix ( ( # ` x ) - 2 ) ) e. Word B ) |
| 88 |
87
|
ad2antrl |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( x prefix ( ( # ` x ) - 2 ) ) e. Word B ) |
| 89 |
85 86 88
|
rspcdva |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( 2 x. k ) = ( # ` ( x prefix ( ( # ` x ) - 2 ) ) ) -> [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph ) ) |
| 90 |
78 89
|
mpd |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph ) |
| 91 |
|
2nn0 |
|- 2 e. NN0 |
| 92 |
91
|
a1i |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 e. NN0 ) |
| 93 |
52
|
addlidd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 0 + 2 ) = 2 ) |
| 94 |
|
0red |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 e. RR ) |
| 95 |
65 67
|
eqeltrrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. k ) e. RR ) |
| 96 |
94 95 70 51
|
leadd1dd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 0 + 2 ) <_ ( ( 2 x. k ) + 2 ) ) |
| 97 |
93 96
|
eqbrtrrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 <_ ( ( 2 x. k ) + 2 ) ) |
| 98 |
97 61
|
breqtrrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 <_ ( # ` x ) ) |
| 99 |
|
nn0sub |
|- ( ( 2 e. NN0 /\ ( # ` x ) e. NN0 ) -> ( 2 <_ ( # ` x ) <-> ( ( # ` x ) - 2 ) e. NN0 ) ) |
| 100 |
99
|
biimpa |
|- ( ( ( 2 e. NN0 /\ ( # ` x ) e. NN0 ) /\ 2 <_ ( # ` x ) ) -> ( ( # ` x ) - 2 ) e. NN0 ) |
| 101 |
92 39 98 100
|
syl21anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) e. NN0 ) |
| 102 |
68
|
recnd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) e. CC ) |
| 103 |
102 52 55
|
subsubd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - ( 2 - 1 ) ) = ( ( ( # ` x ) - 2 ) + 1 ) ) |
| 104 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 105 |
104
|
a1i |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 - 1 ) = 1 ) |
| 106 |
105
|
oveq2d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - ( 2 - 1 ) ) = ( ( # ` x ) - 1 ) ) |
| 107 |
103 106
|
eqtr3d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( ( # ` x ) - 2 ) + 1 ) = ( ( # ` x ) - 1 ) ) |
| 108 |
68
|
lem1d |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 1 ) <_ ( # ` x ) ) |
| 109 |
107 108
|
eqbrtrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( ( # ` x ) - 2 ) + 1 ) <_ ( # ` x ) ) |
| 110 |
|
nn0p1elfzo |
|- ( ( ( ( # ` x ) - 2 ) e. NN0 /\ ( # ` x ) e. NN0 /\ ( ( ( # ` x ) - 2 ) + 1 ) <_ ( # ` x ) ) -> ( ( # ` x ) - 2 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 111 |
101 39 109 110
|
syl3anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 2 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 112 |
|
wrdsymbcl |
|- ( ( x e. Word B /\ ( ( # ` x ) - 2 ) e. ( 0 ..^ ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 2 ) ) e. B ) |
| 113 |
36 111 112
|
syl2anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 2 ) ) e. B ) |
| 114 |
113
|
adantlr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 2 ) ) e. B ) |
| 115 |
|
nn0ge2m1nn0 |
|- ( ( ( # ` x ) e. NN0 /\ 2 <_ ( # ` x ) ) -> ( ( # ` x ) - 1 ) e. NN0 ) |
| 116 |
39 98 115
|
syl2anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 1 ) e. NN0 ) |
| 117 |
102 55
|
npcand |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( ( # ` x ) - 1 ) + 1 ) = ( # ` x ) ) |
| 118 |
68
|
leidd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( # ` x ) <_ ( # ` x ) ) |
| 119 |
117 118
|
eqbrtrd |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( ( # ` x ) - 1 ) + 1 ) <_ ( # ` x ) ) |
| 120 |
|
nn0p1elfzo |
|- ( ( ( ( # ` x ) - 1 ) e. NN0 /\ ( # ` x ) e. NN0 /\ ( ( ( # ` x ) - 1 ) + 1 ) <_ ( # ` x ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 121 |
116 39 119 120
|
syl3anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 122 |
|
wrdsymbcl |
|- ( ( x e. Word B /\ ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 1 ) ) e. B ) |
| 123 |
36 121 122
|
syl2anc |
|- ( ( k e. NN0 /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 1 ) ) e. B ) |
| 124 |
123
|
adantlr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( x ` ( ( # ` x ) - 1 ) ) e. B ) |
| 125 |
|
oveq1 |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( y ++ <" i j "> ) = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) ) |
| 126 |
125
|
sbceq1d |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( [. ( y ++ <" i j "> ) / x ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) / x ]. ph ) ) |
| 127 |
83 126
|
imbi12d |
|- ( y = ( x prefix ( ( # ` x ) - 2 ) ) -> ( ( [. y / x ]. ph -> [. ( y ++ <" i j "> ) / x ]. ph ) <-> ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) / x ]. ph ) ) ) |
| 128 |
|
id |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> i = ( x ` ( ( # ` x ) - 2 ) ) ) |
| 129 |
|
eqidd |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> j = j ) |
| 130 |
128 129
|
s2eqd |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> <" i j "> = <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) |
| 131 |
130
|
oveq2d |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) ) |
| 132 |
131
|
sbceq1d |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> ( [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) / x ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) / x ]. ph ) ) |
| 133 |
132
|
imbi2d |
|- ( i = ( x ` ( ( # ` x ) - 2 ) ) -> ( ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" i j "> ) / x ]. ph ) <-> ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) / x ]. ph ) ) ) |
| 134 |
|
eqidd |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> ( x ` ( ( # ` x ) - 2 ) ) = ( x ` ( ( # ` x ) - 2 ) ) ) |
| 135 |
|
id |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> j = ( x ` ( ( # ` x ) - 1 ) ) ) |
| 136 |
134 135
|
s2eqd |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> <" ( x ` ( ( # ` x ) - 2 ) ) j "> = <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) |
| 137 |
136
|
oveq2d |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) ) |
| 138 |
137
|
sbceq1d |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> ( [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) / x ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) |
| 139 |
138
|
imbi2d |
|- ( j = ( x ` ( ( # ` x ) - 1 ) ) -> ( ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) j "> ) / x ]. ph ) <-> ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) ) |
| 140 |
|
ovex |
|- ( y ++ <" i j "> ) e. _V |
| 141 |
140 3
|
sbcie |
|- ( [. ( y ++ <" i j "> ) / x ]. ph <-> th ) |
| 142 |
6 82 141
|
3imtr4g |
|- ( ( y e. Word B /\ i e. B /\ j e. B ) -> ( [. y / x ]. ph -> [. ( y ++ <" i j "> ) / x ]. ph ) ) |
| 143 |
127 133 139 142
|
vtocl3ga |
|- ( ( ( x prefix ( ( # ` x ) - 2 ) ) e. Word B /\ ( x ` ( ( # ` x ) - 2 ) ) e. B /\ ( x ` ( ( # ` x ) - 1 ) ) e. B ) -> ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) |
| 144 |
88 114 124 143
|
syl3anc |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( [. ( x prefix ( ( # ` x ) - 2 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) |
| 145 |
90 144
|
mpd |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) |
| 146 |
|
simprl |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> x e. Word B ) |
| 147 |
|
1red |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 1 e. RR ) |
| 148 |
|
simpll |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> k e. NN0 ) |
| 149 |
148
|
nn0red |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> k e. RR ) |
| 150 |
149 147
|
readdcld |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( k + 1 ) e. RR ) |
| 151 |
44
|
a1i |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 e. RR ) |
| 152 |
47
|
a1i |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 <_ 2 ) |
| 153 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 154 |
|
0red |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 e. RR ) |
| 155 |
148
|
nn0ge0d |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 0 <_ k ) |
| 156 |
147
|
leidd |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 1 <_ 1 ) |
| 157 |
154 147 149 147 155 156
|
le2addd |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 0 + 1 ) <_ ( k + 1 ) ) |
| 158 |
153 157
|
eqbrtrrid |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 1 <_ ( k + 1 ) ) |
| 159 |
147 150 151 152 158
|
lemul2ad |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. 1 ) <_ ( 2 x. ( k + 1 ) ) ) |
| 160 |
58 159
|
eqbrtrrid |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 <_ ( 2 x. ( k + 1 ) ) ) |
| 161 |
|
simprr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( 2 x. ( k + 1 ) ) = ( # ` x ) ) |
| 162 |
160 161
|
breqtrd |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> 2 <_ ( # ` x ) ) |
| 163 |
|
eqid |
|- ( # ` x ) = ( # ` x ) |
| 164 |
163
|
pfxlsw2ccat |
|- ( ( x e. Word B /\ 2 <_ ( # ` x ) ) -> x = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) ) |
| 165 |
164
|
eqcomd |
|- ( ( x e. Word B /\ 2 <_ ( # ` x ) ) -> ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) = x ) |
| 166 |
165
|
eqcomd |
|- ( ( x e. Word B /\ 2 <_ ( # ` x ) ) -> x = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) ) |
| 167 |
146 162 166
|
syl2anc |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> x = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) ) |
| 168 |
|
sbceq1a |
|- ( x = ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) |
| 169 |
167 168
|
syl |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 2 ) ) ++ <" ( x ` ( ( # ` x ) - 2 ) ) ( x ` ( ( # ` x ) - 1 ) ) "> ) / x ]. ph ) ) |
| 170 |
145 169
|
mpbird |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ ( x e. Word B /\ ( 2 x. ( k + 1 ) ) = ( # ` x ) ) ) -> ph ) |
| 171 |
170
|
expr |
|- ( ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) /\ x e. Word B ) -> ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) |
| 172 |
171
|
ralrimiva |
|- ( ( k e. NN0 /\ A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) ) -> A. x e. Word B ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) |
| 173 |
172
|
ex |
|- ( k e. NN0 -> ( A. y e. Word B ( ( 2 x. k ) = ( # ` y ) -> ch ) -> A. x e. Word B ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) ) |
| 174 |
35 173
|
biimtrid |
|- ( k e. NN0 -> ( A. x e. Word B ( ( 2 x. k ) = ( # ` x ) -> ph ) -> A. x e. Word B ( ( 2 x. ( k + 1 ) ) = ( # ` x ) -> ph ) ) ) |
| 175 |
10 14 18 22 31 174
|
nn0ind |
|- ( m e. NN0 -> A. x e. Word B ( ( 2 x. m ) = ( # ` x ) -> ph ) ) |
| 176 |
175
|
adantl |
|- ( ( A e. Word B /\ m e. NN0 ) -> A. x e. Word B ( ( 2 x. m ) = ( # ` x ) -> ph ) ) |
| 177 |
|
simpl |
|- ( ( A e. Word B /\ m e. NN0 ) -> A e. Word B ) |
| 178 |
|
fveq2 |
|- ( x = A -> ( # ` x ) = ( # ` A ) ) |
| 179 |
178
|
eqeq2d |
|- ( x = A -> ( ( 2 x. m ) = ( # ` x ) <-> ( 2 x. m ) = ( # ` A ) ) ) |
| 180 |
179 4
|
imbi12d |
|- ( x = A -> ( ( ( 2 x. m ) = ( # ` x ) -> ph ) <-> ( ( 2 x. m ) = ( # ` A ) -> ta ) ) ) |
| 181 |
180
|
adantl |
|- ( ( ( A e. Word B /\ m e. NN0 ) /\ x = A ) -> ( ( ( 2 x. m ) = ( # ` x ) -> ph ) <-> ( ( 2 x. m ) = ( # ` A ) -> ta ) ) ) |
| 182 |
177 181
|
rspcdv |
|- ( ( A e. Word B /\ m e. NN0 ) -> ( A. x e. Word B ( ( 2 x. m ) = ( # ` x ) -> ph ) -> ( ( 2 x. m ) = ( # ` A ) -> ta ) ) ) |
| 183 |
176 182
|
mpd |
|- ( ( A e. Word B /\ m e. NN0 ) -> ( ( 2 x. m ) = ( # ` A ) -> ta ) ) |
| 184 |
183
|
imp |
|- ( ( ( A e. Word B /\ m e. NN0 ) /\ ( 2 x. m ) = ( # ` A ) ) -> ta ) |
| 185 |
184
|
adantllr |
|- ( ( ( ( A e. Word B /\ 2 || ( # ` A ) ) /\ m e. NN0 ) /\ ( 2 x. m ) = ( # ` A ) ) -> ta ) |
| 186 |
|
lencl |
|- ( A e. Word B -> ( # ` A ) e. NN0 ) |
| 187 |
|
evennn02n |
|- ( ( # ` A ) e. NN0 -> ( 2 || ( # ` A ) <-> E. m e. NN0 ( 2 x. m ) = ( # ` A ) ) ) |
| 188 |
187
|
biimpa |
|- ( ( ( # ` A ) e. NN0 /\ 2 || ( # ` A ) ) -> E. m e. NN0 ( 2 x. m ) = ( # ` A ) ) |
| 189 |
186 188
|
sylan |
|- ( ( A e. Word B /\ 2 || ( # ` A ) ) -> E. m e. NN0 ( 2 x. m ) = ( # ` A ) ) |
| 190 |
185 189
|
r19.29a |
|- ( ( A e. Word B /\ 2 || ( # ` A ) ) -> ta ) |