| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdt2ind.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
wrdt2ind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
wrdt2ind.3 |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
wrdt2ind.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
wrdt2ind.5 |
⊢ 𝜓 |
| 6 |
|
wrdt2ind.6 |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( 𝜒 → 𝜃 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 2 · 𝑛 ) = ( 2 · 0 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑛 = 0 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑛 = 0 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑛 = 0 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑛 = 𝑘 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) |
| 17 |
16
|
imbi1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 18 |
17
|
ralbidv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) ) ) |
| 21 |
20
|
imbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 22 |
21
|
ralbidv |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 23 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 24 |
23
|
eqeq1i |
⊢ ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ 0 = ( ♯ ‘ 𝑥 ) ) |
| 25 |
|
eqcom |
⊢ ( 0 = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ 𝑥 ) = 0 ) |
| 26 |
24 25
|
bitri |
⊢ ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ 𝑥 ) = 0 ) |
| 27 |
|
hasheq0 |
⊢ ( 𝑥 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) ) |
| 28 |
26 27
|
bitrid |
⊢ ( 𝑥 ∈ Word 𝐵 → ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑥 = ∅ ) ) |
| 29 |
5 1
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝜑 ) |
| 30 |
28 29
|
biimtrdi |
⊢ ( 𝑥 ∈ Word 𝐵 → ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) |
| 31 |
30
|
rgen |
⊢ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) |
| 32 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) ) ) |
| 34 |
33 2
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ) |
| 35 |
34
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) |
| 36 |
|
simprl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ Word 𝐵 ) |
| 37 |
|
0zd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℤ ) |
| 38 |
|
lencl |
⊢ ( 𝑥 ∈ Word 𝐵 → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 39 |
36 38
|
syl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 40 |
39
|
nn0zd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℤ ) |
| 41 |
|
2z |
⊢ 2 ∈ ℤ |
| 42 |
41
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℤ ) |
| 43 |
40 42
|
zsubcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℤ ) |
| 44 |
|
2re |
⊢ 2 ∈ ℝ |
| 45 |
44
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ ) |
| 46 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 47 |
|
0le2 |
⊢ 0 ≤ 2 |
| 48 |
47
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 2 ) |
| 49 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
| 50 |
45 46 48 49
|
mulge0d |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ ( 2 · 𝑘 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ ( 2 · 𝑘 ) ) |
| 52 |
|
2cnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℂ ) |
| 53 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 54 |
53
|
nn0cnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℂ ) |
| 55 |
|
1cnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
| 56 |
52 54 55
|
adddid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 57 |
|
simprr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) |
| 58 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 59 |
58
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 1 ) = 2 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) ) |
| 61 |
56 57 60
|
3eqtr3d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ( 2 · 𝑘 ) + 2 ) ) |
| 62 |
61
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) = ( ( ( 2 · 𝑘 ) + 2 ) − 2 ) ) |
| 63 |
52 54
|
mulcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 64 |
63 52
|
pncand |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( 2 · 𝑘 ) + 2 ) − 2 ) = ( 2 · 𝑘 ) ) |
| 65 |
62 64
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) = ( 2 · 𝑘 ) ) |
| 66 |
51 65
|
breqtrrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ ( ( ♯ ‘ 𝑥 ) − 2 ) ) |
| 67 |
43
|
zred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℝ ) |
| 68 |
39
|
nn0red |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℝ ) |
| 69 |
|
2pos |
⊢ 0 < 2 |
| 70 |
44
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℝ ) |
| 71 |
70 68
|
ltsubposd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 < 2 ↔ ( ( ♯ ‘ 𝑥 ) − 2 ) < ( ♯ ‘ 𝑥 ) ) ) |
| 72 |
69 71
|
mpbii |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) < ( ♯ ‘ 𝑥 ) ) |
| 73 |
67 68 72
|
ltled |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ≤ ( ♯ ‘ 𝑥 ) ) |
| 74 |
37 40 43 66 73
|
elfzd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) |
| 75 |
|
pfxlen |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) = ( ( ♯ ‘ 𝑥 ) − 2 ) ) |
| 76 |
36 74 75
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) = ( ( ♯ ‘ 𝑥 ) − 2 ) ) |
| 77 |
76 65
|
eqtr2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) ) |
| 78 |
77
|
adantlr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) ) |
| 80 |
79
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) ) ) |
| 81 |
|
vex |
⊢ 𝑦 ∈ V |
| 82 |
81 2
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 83 |
|
dfsbcq |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) ) |
| 84 |
82 83
|
bitr3id |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( 𝜒 ↔ [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) ) |
| 85 |
80 84
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) ) ) |
| 86 |
|
simplr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) |
| 87 |
|
pfxcl |
⊢ ( 𝑥 ∈ Word 𝐵 → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 ) |
| 88 |
87
|
ad2antrl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 ) |
| 89 |
85 86 88
|
rspcdva |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) ) |
| 90 |
78 89
|
mpd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) |
| 91 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 92 |
91
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℕ0 ) |
| 93 |
52
|
addlidd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 2 ) = 2 ) |
| 94 |
|
0red |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℝ ) |
| 95 |
65 67
|
eqeltrrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 96 |
94 95 70 51
|
leadd1dd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 2 ) ≤ ( ( 2 · 𝑘 ) + 2 ) ) |
| 97 |
93 96
|
eqbrtrrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ( 2 · 𝑘 ) + 2 ) ) |
| 98 |
97 61
|
breqtrrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
| 99 |
|
nn0sub |
⊢ ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ) ) |
| 100 |
99
|
biimpa |
⊢ ( ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ) |
| 101 |
92 39 98 100
|
syl21anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ) |
| 102 |
68
|
recnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℂ ) |
| 103 |
102 52 55
|
subsubd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) ) |
| 104 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 105 |
104
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 − 1 ) = 1 ) |
| 106 |
105
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
| 107 |
103 106
|
eqtr3d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
| 108 |
68
|
lem1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ≤ ( ♯ ‘ 𝑥 ) ) |
| 109 |
107 108
|
eqbrtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) |
| 110 |
|
nn0p1elfzo |
⊢ ( ( ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 111 |
101 39 109 110
|
syl3anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 112 |
|
wrdsymbcl |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 ) |
| 113 |
36 111 112
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 ) |
| 114 |
113
|
adantlr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 ) |
| 115 |
|
nn0ge2m1nn0 |
⊢ ( ( ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 ) |
| 116 |
39 98 115
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 ) |
| 117 |
102 55
|
npcand |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑥 ) ) |
| 118 |
68
|
leidd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑥 ) ) |
| 119 |
117 118
|
eqbrtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) |
| 120 |
|
nn0p1elfzo |
⊢ ( ( ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 121 |
116 39 119 120
|
syl3anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 122 |
|
wrdsymbcl |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 ) |
| 123 |
36 121 122
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 ) |
| 124 |
123
|
adantlr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 ) |
| 125 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) ) |
| 126 |
125
|
sbceq1d |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 127 |
83 126
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ) ) |
| 128 |
|
id |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) |
| 129 |
|
eqidd |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → 𝑗 = 𝑗 ) |
| 130 |
128 129
|
s2eqd |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → 〈“ 𝑖 𝑗 ”〉 = 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) |
| 131 |
130
|
oveq2d |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) ) |
| 132 |
131
|
sbceq1d |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 133 |
132
|
imbi2d |
⊢ ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ) ) |
| 134 |
|
eqidd |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) |
| 135 |
|
id |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
| 136 |
134 135
|
s2eqd |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 = 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) ) |
| 138 |
137
|
sbceq1d |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 139 |
138
|
imbi2d |
⊢ ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) ) |
| 140 |
|
ovex |
⊢ ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) ∈ V |
| 141 |
140 3
|
sbcie |
⊢ ( [ ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ↔ 𝜃 ) |
| 142 |
6 82 141
|
3imtr4g |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ ( 𝑦 ++ 〈“ 𝑖 𝑗 ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 143 |
127 133 139 142
|
vtocl3ga |
⊢ ( ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 ∧ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 ∧ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 ) → ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 144 |
88 114 124 143
|
syl3anc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 145 |
90 144
|
mpd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) |
| 146 |
|
simprl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ Word 𝐵 ) |
| 147 |
|
1red |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 148 |
|
simpll |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 149 |
148
|
nn0red |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℝ ) |
| 150 |
149 147
|
readdcld |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 151 |
44
|
a1i |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℝ ) |
| 152 |
47
|
a1i |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ 2 ) |
| 153 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 154 |
|
0red |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℝ ) |
| 155 |
148
|
nn0ge0d |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ 𝑘 ) |
| 156 |
147
|
leidd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ≤ 1 ) |
| 157 |
154 147 149 147 155 156
|
le2addd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 1 ) ≤ ( 𝑘 + 1 ) ) |
| 158 |
153 157
|
eqbrtrrid |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑘 + 1 ) ) |
| 159 |
147 150 151 152 158
|
lemul2ad |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 1 ) ≤ ( 2 · ( 𝑘 + 1 ) ) ) |
| 160 |
58 159
|
eqbrtrrid |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( 2 · ( 𝑘 + 1 ) ) ) |
| 161 |
|
simprr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) |
| 162 |
160 161
|
breqtrd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
| 163 |
|
eqid |
⊢ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑥 ) |
| 164 |
163
|
pfxlsw2ccat |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) ) |
| 165 |
164
|
eqcomd |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) = 𝑥 ) |
| 166 |
165
|
eqcomd |
⊢ ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) ) |
| 167 |
146 162 166
|
syl2anc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) ) |
| 168 |
|
sbceq1a |
⊢ ( 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) → ( 𝜑 ↔ [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 169 |
167 168
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝜑 ↔ [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ 〈“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”〉 ) / 𝑥 ] 𝜑 ) ) |
| 170 |
145 169
|
mpbird |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝜑 ) |
| 171 |
170
|
expr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ 𝑥 ∈ Word 𝐵 ) → ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) |
| 172 |
171
|
ralrimiva |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) |
| 173 |
172
|
ex |
⊢ ( 𝑘 ∈ ℕ0 → ( ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 174 |
35 173
|
biimtrid |
⊢ ( 𝑘 ∈ ℕ0 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) ) |
| 175 |
10 14 18 22 31 174
|
nn0ind |
⊢ ( 𝑚 ∈ ℕ0 → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) |
| 176 |
175
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) |
| 177 |
|
simpl |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) → 𝐴 ∈ Word 𝐵 ) |
| 178 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
| 179 |
178
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) ) |
| 180 |
179 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) ) |
| 181 |
180
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑥 = 𝐴 ) → ( ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) ) |
| 182 |
177 181
|
rspcdv |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) ) |
| 183 |
176 182
|
mpd |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) |
| 184 |
183
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝐵 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) → 𝜏 ) |
| 185 |
184
|
adantllr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) → 𝜏 ) |
| 186 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝐵 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 187 |
|
evennn02n |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) ) |
| 188 |
187
|
biimpa |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) |
| 189 |
186 188
|
sylan |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) |
| 190 |
185 189
|
r19.29a |
⊢ ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → 𝜏 ) |