Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd1.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemd1.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemd1.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemd1.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemd1.h |
|- H = ( LHyp ` K ) |
6 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> K e. HL ) |
7 |
|
simpr1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P e. A ) |
8 |
|
simpr2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> Q e. A ) |
9 |
|
simpr31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R e. A ) |
10 |
|
simpr32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P =/= Q ) |
11 |
|
simpr33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
12 |
1 2 3 4
|
2llnma2 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
13 |
6 7 8 9 10 11 12
|
syl132anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R ) |
14 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
15 |
14
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> K e. Lat ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
18 |
9 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R e. ( Base ` K ) ) |
19 |
16 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
20 |
7 19
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P e. ( Base ` K ) ) |
21 |
16 2
|
latjcom |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( R .\/ P ) = ( P .\/ R ) ) |
22 |
15 18 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ P ) = ( P .\/ R ) ) |
23 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
25 |
16 1 2 3 4 5
|
cdlemc1 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. ( Base ` K ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) ) |
26 |
23 18 24 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) ) |
27 |
22 26
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ P ) = ( P .\/ ( ( P .\/ R ) ./\ W ) ) ) |
28 |
16 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
29 |
8 28
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> Q e. ( Base ` K ) ) |
30 |
16 2
|
latjcom |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( R .\/ Q ) = ( Q .\/ R ) ) |
31 |
15 18 29 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ Q ) = ( Q .\/ R ) ) |
32 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
33 |
16 1 2 3 4 5
|
cdlemc1 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. ( Base ` K ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) = ( Q .\/ R ) ) |
34 |
23 18 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) = ( Q .\/ R ) ) |
35 |
31 34
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ Q ) = ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) ) |
36 |
27 35
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = ( ( P .\/ ( ( P .\/ R ) ./\ W ) ) ./\ ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) ) ) |
37 |
13 36
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ./\ W ) ) ./\ ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) ) ) |