| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemc1.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemc1.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemc1.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemc1.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemc1.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemc1.h |
|- H = ( LHyp ` K ) |
| 7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL ) |
| 8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
| 9 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> P e. A ) |
| 10 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
| 11 |
9 10
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> P e. B ) |
| 12 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> X e. B ) |
| 13 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P .\/ X ) e. B ) |
| 14 |
8 11 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ X ) e. B ) |
| 15 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> W e. H ) |
| 16 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 17 |
15 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> W e. B ) |
| 18 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ X ) e. B /\ W e. B ) -> ( ( P .\/ X ) ./\ W ) e. B ) |
| 19 |
8 14 17 18
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ X ) ./\ W ) e. B ) |
| 20 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ P e. B /\ ( ( P .\/ X ) ./\ W ) e. B ) -> ( P .\/ ( ( P .\/ X ) ./\ W ) ) = ( ( ( P .\/ X ) ./\ W ) .\/ P ) ) |
| 21 |
8 11 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( ( P .\/ X ) ./\ W ) ) = ( ( ( P .\/ X ) ./\ W ) .\/ P ) ) |
| 22 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ P e. B /\ X e. B ) -> P .<_ ( P .\/ X ) ) |
| 23 |
8 11 12 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> P .<_ ( P .\/ X ) ) |
| 24 |
1 2 3 4 5
|
atmod2i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ X ) e. B /\ W e. B ) /\ P .<_ ( P .\/ X ) ) -> ( ( ( P .\/ X ) ./\ W ) .\/ P ) = ( ( P .\/ X ) ./\ ( W .\/ P ) ) ) |
| 25 |
7 9 14 17 23 24
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( P .\/ X ) ./\ W ) .\/ P ) = ( ( P .\/ X ) ./\ ( W .\/ P ) ) ) |
| 26 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 27 |
2 3 26 5 6
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) ) |
| 28 |
27
|
3adant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ X ) ./\ ( W .\/ P ) ) = ( ( P .\/ X ) ./\ ( 1. ` K ) ) ) |
| 30 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 31 |
7 30
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> K e. OL ) |
| 32 |
1 4 26
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ X ) e. B ) -> ( ( P .\/ X ) ./\ ( 1. ` K ) ) = ( P .\/ X ) ) |
| 33 |
31 14 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ X ) ./\ ( 1. ` K ) ) = ( P .\/ X ) ) |
| 34 |
29 33
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ X ) ./\ ( W .\/ P ) ) = ( P .\/ X ) ) |
| 35 |
21 25 34
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( ( P .\/ X ) ./\ W ) ) = ( P .\/ X ) ) |