Metamath Proof Explorer


Theorem cdleme35d

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l
|- .<_ = ( le ` K )
cdleme35.j
|- .\/ = ( join ` K )
cdleme35.m
|- ./\ = ( meet ` K )
cdleme35.a
|- A = ( Atoms ` K )
cdleme35.h
|- H = ( LHyp ` K )
cdleme35.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme35.f
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )
Assertion cdleme35d
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( P .\/ R ) ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdleme35.l
 |-  .<_ = ( le ` K )
2 cdleme35.j
 |-  .\/ = ( join ` K )
3 cdleme35.m
 |-  ./\ = ( meet ` K )
4 cdleme35.a
 |-  A = ( Atoms ` K )
5 cdleme35.h
 |-  H = ( LHyp ` K )
6 cdleme35.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme35.f
 |-  F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )
8 1 2 3 4 5 6 7 cdleme35c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ F ) = ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )
9 8 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) )
10 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL )
11 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A )
12 10 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. Lat )
13 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A )
14 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A )
15 eqid
 |-  ( Base ` K ) = ( Base ` K )
16 15 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) )
17 10 13 14 16 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) e. ( Base ` K ) )
18 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. H )
19 15 5 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
20 18 19 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) )
21 15 3 latmcl
 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )
22 12 17 20 21 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )
23 15 1 3 latmle2
 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W )
24 12 17 20 23 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W )
25 15 1 2 3 4 atmod4i2
 |-  ( ( K e. HL /\ ( Q e. A /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( ( P .\/ R ) ./\ W ) .<_ W ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) )
26 10 11 22 20 24 25 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) )
27 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )
28 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )
29 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
30 1 3 29 4 5 lhpmat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ./\ W ) = ( 0. ` K ) )
31 27 28 30 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q ./\ W ) = ( 0. ` K ) )
32 31 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) )
33 hlol
 |-  ( K e. HL -> K e. OL )
34 10 33 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. OL )
35 15 2 29 olj02
 |-  ( ( K e. OL /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) )
36 34 22 35 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) )
37 32 36 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) )
38 9 26 37 3eqtr2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( P .\/ R ) ./\ W ) )