Metamath Proof Explorer


Theorem cdleme35d

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme35d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F˙W=P˙R˙W

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 1 2 3 4 5 6 7 cdleme35c KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F=Q˙P˙R˙W
9 8 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F˙W=Q˙P˙R˙W˙W
10 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHL
11 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA
12 10 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKLat
13 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA
14 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPARAP˙RBaseK
17 10 13 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙RBaseK
18 simp11r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWH
19 15 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWBaseK
21 15 3 latmcl KLatP˙RBaseKWBaseKP˙R˙WBaseK
22 12 17 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙WBaseK
23 15 1 3 latmle2 KLatP˙RBaseKWBaseKP˙R˙W˙W
24 12 17 20 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙W˙W
25 15 1 2 3 4 atmod4i2 KHLQAP˙R˙WBaseKWBaseKP˙R˙W˙WQ˙W˙P˙R˙W=Q˙P˙R˙W˙W
26 10 11 22 20 24 25 syl131anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙W˙P˙R˙W=Q˙P˙R˙W˙W
27 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHLWH
28 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA¬Q˙W
29 eqid 0.K=0.K
30 1 3 29 4 5 lhpmat KHLWHQA¬Q˙WQ˙W=0.K
31 27 28 30 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙W=0.K
32 31 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙W˙P˙R˙W=0.K˙P˙R˙W
33 hlol KHLKOL
34 10 33 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKOL
35 15 2 29 olj02 KOLP˙R˙WBaseK0.K˙P˙R˙W=P˙R˙W
36 34 22 35 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q0.K˙P˙R˙W=P˙R˙W
37 32 36 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙W˙P˙R˙W=P˙R˙W
38 9 26 37 3eqtr2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F˙W=P˙R˙W