Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme35.l |
|
2 |
|
cdleme35.j |
|
3 |
|
cdleme35.m |
|
4 |
|
cdleme35.a |
|
5 |
|
cdleme35.h |
|
6 |
|
cdleme35.u |
|
7 |
|
cdleme35.f |
|
8 |
1 2 3 4 5 6 7
|
cdleme35c |
|
9 |
8
|
oveq1d |
|
10 |
|
simp11l |
|
11 |
|
simp13l |
|
12 |
10
|
hllatd |
|
13 |
|
simp12l |
|
14 |
|
simp2rl |
|
15 |
|
eqid |
|
16 |
15 2 4
|
hlatjcl |
|
17 |
10 13 14 16
|
syl3anc |
|
18 |
|
simp11r |
|
19 |
15 5
|
lhpbase |
|
20 |
18 19
|
syl |
|
21 |
15 3
|
latmcl |
|
22 |
12 17 20 21
|
syl3anc |
|
23 |
15 1 3
|
latmle2 |
|
24 |
12 17 20 23
|
syl3anc |
|
25 |
15 1 2 3 4
|
atmod4i2 |
|
26 |
10 11 22 20 24 25
|
syl131anc |
|
27 |
|
simp11 |
|
28 |
|
simp13 |
|
29 |
|
eqid |
|
30 |
1 3 29 4 5
|
lhpmat |
|
31 |
27 28 30
|
syl2anc |
|
32 |
31
|
oveq1d |
|
33 |
|
hlol |
|
34 |
10 33
|
syl |
|
35 |
15 2 29
|
olj02 |
|
36 |
34 22 35
|
syl2anc |
|
37 |
32 36
|
eqtrd |
|
38 |
9 26 37
|
3eqtr2d |
|