Metamath Proof Explorer


Theorem cdlemk54

Description: Part of proof of Lemma K of Crawley p. 118. Line 10, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk5.y
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
cdlemk5.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk54
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( [_ ( G o. I ) / g ]_ X o. [_ j / g ]_ X ) = ( ( [_ G / g ]_ X o. [_ I / g ]_ X ) o. [_ j / g ]_ X ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk5.y
 |-  Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
11 cdlemk5.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
12 coass
 |-  ( ( G o. I ) o. j ) = ( G o. ( I o. j ) )
13 csbeq1
 |-  ( ( ( G o. I ) o. j ) = ( G o. ( I o. j ) ) -> [_ ( ( G o. I ) o. j ) / g ]_ X = [_ ( G o. ( I o. j ) ) / g ]_ X )
14 12 13 ax-mp
 |-  [_ ( ( G o. I ) o. j ) / g ]_ X = [_ ( G o. ( I o. j ) ) / g ]_ X
15 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) )
16 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) )
17 simp1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( K e. HL /\ W e. H ) )
18 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> G e. T )
19 simp31l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> I e. T )
20 6 7 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ I e. T ) -> ( G o. I ) e. T )
21 17 18 19 20 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( G o. I ) e. T )
22 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
23 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> j e. T )
24 simp333
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` j ) =/= ( R ` ( G o. I ) ) )
25 24 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` ( G o. I ) ) =/= ( R ` j ) )
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G o. I ) e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( j e. T /\ ( R ` ( G o. I ) ) =/= ( R ` j ) ) ) -> [_ ( ( G o. I ) o. j ) / g ]_ X = ( [_ ( G o. I ) / g ]_ X o. [_ j / g ]_ X ) )
27 15 16 21 22 23 25 26 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> [_ ( ( G o. I ) o. j ) / g ]_ X = ( [_ ( G o. I ) / g ]_ X o. [_ j / g ]_ X ) )
28 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) )
29 6 7 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ I e. T /\ j e. T ) -> ( I o. j ) e. T )
30 17 19 23 29 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( I o. j ) e. T )
31 simp31r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` G ) = ( R ` I ) )
32 simp332
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` j ) =/= ( R ` G ) )
33 32 31 neeqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` j ) =/= ( R ` I ) )
34 33 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` I ) =/= ( R ` j ) )
35 simp331
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> j =/= ( _I |` B ) )
36 1 6 7 8 trlcone
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( I e. T /\ j e. T ) /\ ( ( R ` I ) =/= ( R ` j ) /\ j =/= ( _I |` B ) ) ) -> ( R ` I ) =/= ( R ` ( I o. j ) ) )
37 17 19 23 34 35 36 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` I ) =/= ( R ` ( I o. j ) ) )
38 31 37 eqnetrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( R ` G ) =/= ( R ` ( I o. j ) ) )
39 1 2 3 4 5 6 7 8 9 10 11 cdlemk53
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I o. j ) e. T /\ ( R ` G ) =/= ( R ` ( I o. j ) ) ) ) -> [_ ( G o. ( I o. j ) ) / g ]_ X = ( [_ G / g ]_ X o. [_ ( I o. j ) / g ]_ X ) )
40 15 28 30 38 39 syl112anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> [_ ( G o. ( I o. j ) ) / g ]_ X = ( [_ G / g ]_ X o. [_ ( I o. j ) / g ]_ X ) )
41 1 2 3 4 5 6 7 8 9 10 11 cdlemk53
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ I e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( j e. T /\ ( R ` I ) =/= ( R ` j ) ) ) -> [_ ( I o. j ) / g ]_ X = ( [_ I / g ]_ X o. [_ j / g ]_ X ) )
42 15 16 19 22 23 34 41 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> [_ ( I o. j ) / g ]_ X = ( [_ I / g ]_ X o. [_ j / g ]_ X ) )
43 42 coeq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( [_ G / g ]_ X o. [_ ( I o. j ) / g ]_ X ) = ( [_ G / g ]_ X o. ( [_ I / g ]_ X o. [_ j / g ]_ X ) ) )
44 coass
 |-  ( ( [_ G / g ]_ X o. [_ I / g ]_ X ) o. [_ j / g ]_ X ) = ( [_ G / g ]_ X o. ( [_ I / g ]_ X o. [_ j / g ]_ X ) )
45 43 44 eqtr4di
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( [_ G / g ]_ X o. [_ ( I o. j ) / g ]_ X ) = ( ( [_ G / g ]_ X o. [_ I / g ]_ X ) o. [_ j / g ]_ X ) )
46 40 45 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> [_ ( G o. ( I o. j ) ) / g ]_ X = ( ( [_ G / g ]_ X o. [_ I / g ]_ X ) o. [_ j / g ]_ X ) )
47 14 27 46 3eqtr3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( ( I e. T /\ ( R ` G ) = ( R ` I ) ) /\ j e. T /\ ( j =/= ( _I |` B ) /\ ( R ` j ) =/= ( R ` G ) /\ ( R ` j ) =/= ( R ` ( G o. I ) ) ) ) ) -> ( [_ ( G o. I ) / g ]_ X o. [_ j / g ]_ X ) = ( ( [_ G / g ]_ X o. [_ I / g ]_ X ) o. [_ j / g ]_ X ) )