Step |
Hyp |
Ref |
Expression |
1 |
|
uncfval.g |
|- F = ( <" C D E "> uncurryF G ) |
2 |
|
uncfval.c |
|- ( ph -> D e. Cat ) |
3 |
|
uncfval.d |
|- ( ph -> E e. Cat ) |
4 |
|
uncfval.f |
|- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
5 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
6 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> E e. Cat ) |
7 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
10 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
11 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
12 |
1 5 6 7 8 9 10 11
|
uncf1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( x ( 1st ` F ) y ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
13 |
12
|
mpteq2dva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) = ( y e. ( Base ` D ) |-> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
14 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
15 |
|
relfunc |
|- Rel ( D Func E ) |
16 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
17 |
16
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
18 |
|
relfunc |
|- Rel ( C Func ( D FuncCat E ) ) |
19 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
20 |
18 4 19
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
21 |
8 17 20
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( D Func E ) ) |
22 |
21
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
23 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
24 |
15 22 23
|
sylancr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
25 |
9 14 24
|
funcf1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
26 |
25
|
feqmptd |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) |-> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
27 |
13 26
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) = ( 1st ` ( ( 1st ` G ) ` x ) ) ) |
28 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
29 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> E e. Cat ) |
30 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
31 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> x e. ( Base ` C ) ) |
32 |
|
simplrl |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> y e. ( Base ` D ) ) |
33 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
34 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
35 |
|
simprr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> z e. ( Base ` D ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> z e. ( Base ` D ) ) |
37 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
38 |
|
funcrcl |
|- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
39 |
4 38
|
syl |
|- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
40 |
39
|
simpld |
|- ( ph -> C e. Cat ) |
41 |
40
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
42 |
8 33 37 41 31
|
catidcl |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
43 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( y ( Hom ` D ) z ) ) |
44 |
1 28 29 30 8 9 31 32 33 34 31 36 42 43
|
uncf2 |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
45 |
|
eqid |
|- ( Id ` ( D FuncCat E ) ) = ( Id ` ( D FuncCat E ) ) |
46 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
47 |
8 37 45 46 31
|
funcid |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` ( D FuncCat E ) ) ` ( ( 1st ` G ) ` x ) ) ) |
48 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
49 |
22
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
50 |
16 45 48 49
|
fucid |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` ( D FuncCat E ) ) ` ( ( 1st ` G ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
51 |
47 50
|
eqtrd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
52 |
51
|
fveq1d |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) = ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) ) |
53 |
25
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
54 |
|
fvco3 |
|- ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) /\ z e. ( Base ` D ) ) -> ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
55 |
53 36 54
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
56 |
52 55
|
eqtrd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
57 |
56
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) = ( ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
58 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
59 |
53 32
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) e. ( Base ` E ) ) |
60 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
61 |
53 36
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) e. ( Base ` E ) ) |
62 |
24
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
63 |
|
simprl |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
64 |
9 34 58 62 63 35
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) : ( y ( Hom ` D ) z ) --> ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
65 |
64
|
ffvelrnda |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) e. ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
66 |
14 58 48 29 59 60 61 65
|
catlid |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) = ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) |
67 |
44 57 66
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) |
68 |
67
|
mpteq2dva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
69 |
64
|
feqmptd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` g ) ) ) |
70 |
68 69
|
eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) |
71 |
70
|
3impb |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) /\ z e. ( Base ` D ) ) -> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) |
72 |
71
|
mpoeq3dva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
73 |
9 24
|
funcfn2 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 2nd ` ( ( 1st ` G ) ` x ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
74 |
|
fnov |
|- ( ( 2nd ` ( ( 1st ` G ) ` x ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( 2nd ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
75 |
73 74
|
sylib |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 2nd ` ( ( 1st ` G ) ` x ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ) ) |
76 |
72 75
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
77 |
27 76
|
opeq12d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
78 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( ( 1st ` G ) ` x ) = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
79 |
15 22 78
|
sylancr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) = <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ) |
80 |
77 79
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = ( ( 1st ` G ) ` x ) ) |
81 |
80
|
mpteq2dva |
|- ( ph -> ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( x e. ( Base ` C ) |-> ( ( 1st ` G ) ` x ) ) ) |
82 |
21
|
feqmptd |
|- ( ph -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> ( ( 1st ` G ) ` x ) ) ) |
83 |
81 82
|
eqtr4d |
|- ( ph -> ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( 1st ` G ) ) |
84 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> D e. Cat ) |
85 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> E e. Cat ) |
86 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
87 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
88 |
87
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
89 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> z e. ( Base ` D ) ) |
90 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
91 |
90
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
92 |
|
simplr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> g e. ( x ( Hom ` C ) y ) ) |
93 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
94 |
9 34 93 84 89
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( Id ` D ) ` z ) e. ( z ( Hom ` D ) z ) ) |
95 |
1 84 85 86 8 9 88 89 33 34 91 89 92 94
|
uncf2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) ) ) |
96 |
22
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
97 |
96
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
98 |
15 97 23
|
sylancr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
99 |
98
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
100 |
9 93 48 99 89
|
funcid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) |
101 |
100
|
oveq2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` x ) ) z ) ` ( ( Id ` D ) ` z ) ) ) = ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) ) |
102 |
9 14 98
|
funcf1 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
103 |
102
|
ffvelrnda |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) e. ( Base ` E ) ) |
104 |
21
|
ffvelrnda |
|- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
105 |
104
|
adantrl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
106 |
105
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( 1st ` G ) ` y ) e. ( D Func E ) ) |
107 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` y ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` y ) ) ) |
108 |
15 106 107
|
sylancr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` y ) ) ) |
109 |
9 14 108
|
funcf1 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( 1st ` ( ( 1st ` G ) ` y ) ) : ( Base ` D ) --> ( Base ` E ) ) |
110 |
109
|
ffvelrnda |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) e. ( Base ` E ) ) |
111 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
112 |
16 111
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
113 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
114 |
8 33 112 113 88 91
|
funcf2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
115 |
114 92
|
ffvelrnd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
116 |
111 115
|
nat1st2nd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ( D Nat E ) <. ( 1st ` ( ( 1st ` G ) ` y ) ) , ( 2nd ` ( ( 1st ` G ) ` y ) ) >. ) ) |
117 |
111 116 9 58 89
|
natcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) e. ( ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ) |
118 |
14 58 48 85 103 60 110 117
|
catrid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` z ) ) ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` z ) ) ) = ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) |
119 |
95 101 118
|
3eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) /\ z e. ( Base ` D ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) = ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) |
120 |
119
|
mpteq2dva |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
121 |
20
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
122 |
8 33 112 121 87 90
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
123 |
122
|
ffvelrnda |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
124 |
111 123
|
nat1st2nd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( <. ( 1st ` ( ( 1st ` G ) ` x ) ) , ( 2nd ` ( ( 1st ` G ) ` x ) ) >. ( D Nat E ) <. ( 1st ` ( ( 1st ` G ) ` y ) ) , ( 2nd ` ( ( 1st ` G ) ` y ) ) >. ) ) |
125 |
111 124 9
|
natfn |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) Fn ( Base ` D ) ) |
126 |
|
dffn5 |
|- ( ( ( x ( 2nd ` G ) y ) ` g ) Fn ( Base ` D ) <-> ( ( x ( 2nd ` G ) y ) ` g ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
127 |
125 126
|
sylib |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) = ( z e. ( Base ` D ) |-> ( ( ( x ( 2nd ` G ) y ) ` g ) ` z ) ) ) |
128 |
120 127
|
eqtr4d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) = ( ( x ( 2nd ` G ) y ) ` g ) ) |
129 |
128
|
mpteq2dva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( g e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` G ) y ) ` g ) ) ) |
130 |
122
|
feqmptd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` G ) y ) ` g ) ) ) |
131 |
129 130
|
eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( x ( 2nd ` G ) y ) ) |
132 |
131
|
3impb |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) = ( x ( 2nd ` G ) y ) ) |
133 |
132
|
mpoeq3dva |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
134 |
8 20
|
funcfn2 |
|- ( ph -> ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
135 |
|
fnov |
|- ( ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
136 |
134 135
|
sylib |
|- ( ph -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` G ) y ) ) ) |
137 |
133 136
|
eqtr4d |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( 2nd ` G ) ) |
138 |
83 137
|
opeq12d |
|- ( ph -> <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
139 |
|
eqid |
|- ( <. C , D >. curryF F ) = ( <. C , D >. curryF F ) |
140 |
1 2 3 4
|
uncfcl |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
141 |
139 8 40 2 140 9 34 37 33 93
|
curfval |
|- ( ph -> ( <. C , D >. curryF F ) = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
142 |
|
1st2nd |
|- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
143 |
18 4 142
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
144 |
138 141 143
|
3eqtr4d |
|- ( ph -> ( <. C , D >. curryF F ) = G ) |