| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncfval.g |
|- F = ( <" C D E "> uncurryF G ) |
| 2 |
|
uncfval.c |
|- ( ph -> D e. Cat ) |
| 3 |
|
uncfval.d |
|- ( ph -> E e. Cat ) |
| 4 |
|
uncfval.f |
|- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
| 5 |
|
uncf1.a |
|- A = ( Base ` C ) |
| 6 |
|
uncf1.b |
|- B = ( Base ` D ) |
| 7 |
|
uncf1.x |
|- ( ph -> X e. A ) |
| 8 |
|
uncf1.y |
|- ( ph -> Y e. B ) |
| 9 |
|
uncf2.h |
|- H = ( Hom ` C ) |
| 10 |
|
uncf2.j |
|- J = ( Hom ` D ) |
| 11 |
|
uncf2.z |
|- ( ph -> Z e. A ) |
| 12 |
|
uncf2.w |
|- ( ph -> W e. B ) |
| 13 |
|
uncf2.r |
|- ( ph -> R e. ( X H Z ) ) |
| 14 |
|
uncf2.s |
|- ( ph -> S e. ( Y J W ) ) |
| 15 |
1 2 3 4
|
uncfval |
|- ( ph -> F = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
| 16 |
15
|
fveq2d |
|- ( ph -> ( 2nd ` F ) = ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) ) |
| 17 |
16
|
oveqd |
|- ( ph -> ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) = ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ) |
| 18 |
17
|
oveqd |
|- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) ) |
| 19 |
|
df-ov |
|- ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) = ( ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ` <. R , S >. ) |
| 20 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 21 |
20 5 6
|
xpcbas |
|- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 22 |
|
eqid |
|- ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) = ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) |
| 23 |
|
eqid |
|- ( ( D FuncCat E ) Xc. D ) = ( ( D FuncCat E ) Xc. D ) |
| 24 |
|
funcrcl |
|- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 25 |
4 24
|
syl |
|- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
| 26 |
25
|
simpld |
|- ( ph -> C e. Cat ) |
| 27 |
|
eqid |
|- ( C 1stF D ) = ( C 1stF D ) |
| 28 |
20 26 2 27
|
1stfcl |
|- ( ph -> ( C 1stF D ) e. ( ( C Xc. D ) Func C ) ) |
| 29 |
28 4
|
cofucl |
|- ( ph -> ( G o.func ( C 1stF D ) ) e. ( ( C Xc. D ) Func ( D FuncCat E ) ) ) |
| 30 |
|
eqid |
|- ( C 2ndF D ) = ( C 2ndF D ) |
| 31 |
20 26 2 30
|
2ndfcl |
|- ( ph -> ( C 2ndF D ) e. ( ( C Xc. D ) Func D ) ) |
| 32 |
22 23 29 31
|
prfcl |
|- ( ph -> ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) e. ( ( C Xc. D ) Func ( ( D FuncCat E ) Xc. D ) ) ) |
| 33 |
|
eqid |
|- ( D evalF E ) = ( D evalF E ) |
| 34 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 35 |
33 34 2 3
|
evlfcl |
|- ( ph -> ( D evalF E ) e. ( ( ( D FuncCat E ) Xc. D ) Func E ) ) |
| 36 |
7 8
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 37 |
11 12
|
opelxpd |
|- ( ph -> <. Z , W >. e. ( A X. B ) ) |
| 38 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 39 |
13 14
|
opelxpd |
|- ( ph -> <. R , S >. e. ( ( X H Z ) X. ( Y J W ) ) ) |
| 40 |
20 5 6 9 10 7 8 11 12 38
|
xpchom2 |
|- ( ph -> ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) = ( ( X H Z ) X. ( Y J W ) ) ) |
| 41 |
39 40
|
eleqtrrd |
|- ( ph -> <. R , S >. e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) |
| 42 |
21 32 35 36 37 38 41
|
cofu2 |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 43 |
19 42
|
eqtrid |
|- ( ph -> ( R ( <. X , Y >. ( 2nd ` ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) <. Z , W >. ) S ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 44 |
18 43
|
eqtrd |
|- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 45 |
22 21 38 29 31 36
|
prf1 |
|- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. ) |
| 46 |
21 28 4 36
|
cofu1 |
|- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) ) |
| 47 |
20 21 38 26 2 27 36
|
1stf1 |
|- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = ( 1st ` <. X , Y >. ) ) |
| 48 |
|
op1stg |
|- ( ( X e. A /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
| 49 |
7 8 48
|
syl2anc |
|- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 50 |
47 49
|
eqtrd |
|- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) = X ) |
| 51 |
50
|
fveq2d |
|- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ) = ( ( 1st ` G ) ` X ) ) |
| 52 |
46 51
|
eqtrd |
|- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) = ( ( 1st ` G ) ` X ) ) |
| 53 |
20 21 38 26 2 30 36
|
2ndf1 |
|- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = ( 2nd ` <. X , Y >. ) ) |
| 54 |
|
op2ndg |
|- ( ( X e. A /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 55 |
7 8 54
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 56 |
53 55
|
eqtrd |
|- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) = Y ) |
| 57 |
52 56
|
opeq12d |
|- ( ph -> <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. X , Y >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. X , Y >. ) >. = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 58 |
45 57
|
eqtrd |
|- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) = <. ( ( 1st ` G ) ` X ) , Y >. ) |
| 59 |
22 21 38 29 31 37
|
prf1 |
|- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) = <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) >. ) |
| 60 |
21 28 4 37
|
cofu1 |
|- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) = ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ) |
| 61 |
20 21 38 26 2 27 37
|
1stf1 |
|- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) = ( 1st ` <. Z , W >. ) ) |
| 62 |
|
op1stg |
|- ( ( Z e. A /\ W e. B ) -> ( 1st ` <. Z , W >. ) = Z ) |
| 63 |
11 12 62
|
syl2anc |
|- ( ph -> ( 1st ` <. Z , W >. ) = Z ) |
| 64 |
61 63
|
eqtrd |
|- ( ph -> ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) = Z ) |
| 65 |
64
|
fveq2d |
|- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) = ( ( 1st ` G ) ` Z ) ) |
| 66 |
60 65
|
eqtrd |
|- ( ph -> ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) = ( ( 1st ` G ) ` Z ) ) |
| 67 |
20 21 38 26 2 30 37
|
2ndf1 |
|- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) = ( 2nd ` <. Z , W >. ) ) |
| 68 |
|
op2ndg |
|- ( ( Z e. A /\ W e. B ) -> ( 2nd ` <. Z , W >. ) = W ) |
| 69 |
11 12 68
|
syl2anc |
|- ( ph -> ( 2nd ` <. Z , W >. ) = W ) |
| 70 |
67 69
|
eqtrd |
|- ( ph -> ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) = W ) |
| 71 |
66 70
|
opeq12d |
|- ( ph -> <. ( ( 1st ` ( G o.func ( C 1stF D ) ) ) ` <. Z , W >. ) , ( ( 1st ` ( C 2ndF D ) ) ` <. Z , W >. ) >. = <. ( ( 1st ` G ) ` Z ) , W >. ) |
| 72 |
59 71
|
eqtrd |
|- ( ph -> ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) = <. ( ( 1st ` G ) ` Z ) , W >. ) |
| 73 |
58 72
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) = ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ) |
| 74 |
22 21 38 29 31 36 37 41
|
prf2 |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = <. ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) , ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) >. ) |
| 75 |
21 28 4 36 37 38 41
|
cofu2 |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) ) ) |
| 76 |
50 64
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) = ( X ( 2nd ` G ) Z ) ) |
| 77 |
20 21 38 26 2 27 36 37
|
1stf2 |
|- ( ph -> ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) = ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ) |
| 78 |
77
|
fveq1d |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) ) |
| 79 |
41
|
fvresd |
|- ( ph -> ( ( 1st |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) = ( 1st ` <. R , S >. ) ) |
| 80 |
|
op1stg |
|- ( ( R e. ( X H Z ) /\ S e. ( Y J W ) ) -> ( 1st ` <. R , S >. ) = R ) |
| 81 |
13 14 80
|
syl2anc |
|- ( ph -> ( 1st ` <. R , S >. ) = R ) |
| 82 |
78 79 81
|
3eqtrd |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) = R ) |
| 83 |
76 82
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` ( C 1stF D ) ) ` <. X , Y >. ) ( 2nd ` G ) ( ( 1st ` ( C 1stF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C 1stF D ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( X ( 2nd ` G ) Z ) ` R ) ) |
| 84 |
75 83
|
eqtrd |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( X ( 2nd ` G ) Z ) ` R ) ) |
| 85 |
20 21 38 26 2 30 36 37
|
2ndf2 |
|- ( ph -> ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) = ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ) |
| 86 |
85
|
fveq1d |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) = ( ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) ) |
| 87 |
41
|
fvresd |
|- ( ph -> ( ( 2nd |` ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) ` <. R , S >. ) = ( 2nd ` <. R , S >. ) ) |
| 88 |
|
op2ndg |
|- ( ( R e. ( X H Z ) /\ S e. ( Y J W ) ) -> ( 2nd ` <. R , S >. ) = S ) |
| 89 |
13 14 88
|
syl2anc |
|- ( ph -> ( 2nd ` <. R , S >. ) = S ) |
| 90 |
86 87 89
|
3eqtrd |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) = S ) |
| 91 |
84 90
|
opeq12d |
|- ( ph -> <. ( ( <. X , Y >. ( 2nd ` ( G o.func ( C 1stF D ) ) ) <. Z , W >. ) ` <. R , S >. ) , ( ( <. X , Y >. ( 2nd ` ( C 2ndF D ) ) <. Z , W >. ) ` <. R , S >. ) >. = <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
| 92 |
74 91
|
eqtrd |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) = <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
| 93 |
73 92
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ` <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) ) |
| 94 |
|
df-ov |
|- ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) = ( ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) ` <. ( ( X ( 2nd ` G ) Z ) ` R ) , S >. ) |
| 95 |
93 94
|
eqtr4di |
|- ( ph -> ( ( ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. X , Y >. ) ( 2nd ` ( D evalF E ) ) ( ( 1st ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) <. Z , W >. ) ` <. R , S >. ) ) = ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) ) |
| 96 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 97 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 98 |
34
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 99 |
|
relfunc |
|- Rel ( C Func ( D FuncCat E ) ) |
| 100 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( D FuncCat E ) ) /\ G e. ( C Func ( D FuncCat E ) ) ) -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 101 |
99 4 100
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func ( D FuncCat E ) ) ( 2nd ` G ) ) |
| 102 |
5 98 101
|
funcf1 |
|- ( ph -> ( 1st ` G ) : A --> ( D Func E ) ) |
| 103 |
102 7
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` G ) ` X ) e. ( D Func E ) ) |
| 104 |
102 11
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` G ) ` Z ) e. ( D Func E ) ) |
| 105 |
|
eqid |
|- ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) = ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) |
| 106 |
34 97
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
| 107 |
5 9 106 101 7 11
|
funcf2 |
|- ( ph -> ( X ( 2nd ` G ) Z ) : ( X H Z ) --> ( ( ( 1st ` G ) ` X ) ( D Nat E ) ( ( 1st ` G ) ` Z ) ) ) |
| 108 |
107 13
|
ffvelcdmd |
|- ( ph -> ( ( X ( 2nd ` G ) Z ) ` R ) e. ( ( ( 1st ` G ) ` X ) ( D Nat E ) ( ( 1st ` G ) ` Z ) ) ) |
| 109 |
33 2 3 6 10 96 97 103 104 8 12 105 108 14
|
evlf2val |
|- ( ph -> ( ( ( X ( 2nd ` G ) Z ) ` R ) ( <. ( ( 1st ` G ) ` X ) , Y >. ( 2nd ` ( D evalF E ) ) <. ( ( 1st ` G ) ` Z ) , W >. ) S ) = ( ( ( ( X ( 2nd ` G ) Z ) ` R ) ` W ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` W ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Z ) ) ` W ) ) ( ( Y ( 2nd ` ( ( 1st ` G ) ` X ) ) W ) ` S ) ) ) |
| 110 |
44 95 109
|
3eqtrd |
|- ( ph -> ( R ( <. X , Y >. ( 2nd ` F ) <. Z , W >. ) S ) = ( ( ( ( X ( 2nd ` G ) Z ) ` R ) ` W ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` Y ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` W ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Z ) ) ` W ) ) ( ( Y ( 2nd ` ( ( 1st ` G ) ` X ) ) W ) ` S ) ) ) |