| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncfcurf.g |
|- G = ( <. C , D >. curryF F ) |
| 2 |
|
uncfcurf.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
uncfcurf.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
uncfcurf.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
| 5 |
|
eqid |
|- ( <" C D E "> uncurryF G ) = ( <" C D E "> uncurryF G ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> D e. Cat ) |
| 7 |
|
funcrcl |
|- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 9 |
8
|
simprd |
|- ( ph -> E e. Cat ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> E e. Cat ) |
| 11 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 12 |
1 11 2 3 4
|
curfcl |
|- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
| 14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 16 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` C ) ) |
| 17 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
| 18 |
5 6 10 13 14 15 16 17
|
uncf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> C e. Cat ) |
| 20 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 21 |
|
eqid |
|- ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` x ) |
| 22 |
1 14 19 6 20 15 16 21 17
|
curf11 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
| 23 |
18 22
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) |
| 24 |
23
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) |
| 25 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 26 |
25 14 15
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 28 |
|
relfunc |
|- Rel ( ( C Xc. D ) Func E ) |
| 29 |
5 3 9 12
|
uncfcl |
|- ( ph -> ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) |
| 30 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
| 31 |
28 29 30
|
sylancr |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
| 32 |
26 27 31
|
funcf1 |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` E ) ) |
| 33 |
32
|
ffnd |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 34 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 35 |
28 4 34
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 36 |
26 27 35
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` E ) ) |
| 37 |
36
|
ffnd |
|- ( ph -> ( 1st ` F ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 38 |
|
eqfnov2 |
|- ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) Fn ( ( Base ` C ) X. ( Base ` D ) ) /\ ( 1st ` F ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) ) |
| 39 |
33 37 38
|
syl2anc |
|- ( ph -> ( ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) ) |
| 40 |
24 39
|
mpbird |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) ) |
| 41 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> D e. Cat ) |
| 42 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> E e. Cat ) |
| 43 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
| 44 |
16
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> x e. ( Base ` C ) ) |
| 45 |
44
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> x e. ( Base ` C ) ) |
| 46 |
17
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> y e. ( Base ` D ) ) |
| 48 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 49 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 50 |
|
simprl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> z e. ( Base ` C ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> z e. ( Base ` C ) ) |
| 52 |
|
simprr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> w e. ( Base ` D ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> w e. ( Base ` D ) ) |
| 54 |
|
simprl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> f e. ( x ( Hom ` C ) z ) ) |
| 55 |
|
simprr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> g e. ( y ( Hom ` D ) w ) ) |
| 56 |
5 41 42 43 14 15 45 47 48 49 51 53 54 55
|
uncf2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) ) |
| 57 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> C e. Cat ) |
| 58 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 59 |
1 14 57 41 58 15 45 21 47
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
| 60 |
|
df-ov |
|- ( x ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. x , y >. ) |
| 61 |
59 60
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( ( 1st ` F ) ` <. x , y >. ) ) |
| 62 |
1 14 57 41 58 15 45 21 53
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( x ( 1st ` F ) w ) ) |
| 63 |
|
df-ov |
|- ( x ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. x , w >. ) |
| 64 |
62 63
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( ( 1st ` F ) ` <. x , w >. ) ) |
| 65 |
61 64
|
opeq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ) |
| 66 |
|
eqid |
|- ( ( 1st ` G ) ` z ) = ( ( 1st ` G ) ` z ) |
| 67 |
1 14 57 41 58 15 51 66 53
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( z ( 1st ` F ) w ) ) |
| 68 |
|
df-ov |
|- ( z ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. z , w >. ) |
| 69 |
67 68
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( ( 1st ` F ) ` <. z , w >. ) ) |
| 70 |
65 69
|
oveq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
| 71 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 72 |
|
eqid |
|- ( ( x ( 2nd ` G ) z ) ` f ) = ( ( x ( 2nd ` G ) z ) ` f ) |
| 73 |
1 14 57 41 58 15 48 71 45 51 54 72 53
|
curf2val |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) = ( f ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 74 |
|
df-ov |
|- ( f ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) |
| 75 |
73 74
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) |
| 76 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 77 |
1 14 57 41 58 15 45 21 47 49 76 53 55
|
curf12 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) = ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , w >. ) g ) ) |
| 78 |
|
df-ov |
|- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , w >. ) g ) = ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) |
| 79 |
77 78
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) = ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) |
| 80 |
70 75 79
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) = ( ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) ) |
| 81 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 82 |
|
eqid |
|- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
| 83 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 84 |
35
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 86 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 87 |
86
|
ad2antlr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 88 |
87
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 89 |
45 53
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 90 |
|
opelxpi |
|- ( ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 91 |
90
|
adantl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 92 |
91
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 93 |
14 48 76 57 45
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 94 |
93 55
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` x ) , g >. e. ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) w ) ) ) |
| 95 |
25 14 15 48 49 45 47 45 53 81
|
xpchom2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , w >. ) = ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) w ) ) ) |
| 96 |
94 95
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` x ) , g >. e. ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , w >. ) ) |
| 97 |
15 49 71 41 53
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( Id ` D ) ` w ) e. ( w ( Hom ` D ) w ) ) |
| 98 |
54 97
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( ( x ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 99 |
25 14 15 48 49 45 53 51 53 81
|
xpchom2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( x ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 100 |
98 99
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) ) |
| 101 |
26 81 82 83 85 88 89 92 96 100
|
funcco |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) ) |
| 102 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 103 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 104 |
25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97
|
xpcco2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) = <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) |
| 105 |
104
|
fveq2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) ) |
| 106 |
|
df-ov |
|- ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) = ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) |
| 107 |
105 106
|
eqtr4di |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) ) |
| 108 |
14 48 76 57 45 102 51 54
|
catrid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) = f ) |
| 109 |
15 49 71 41 47 103 53 55
|
catlid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) = g ) |
| 110 |
108 109
|
oveq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
| 111 |
107 110
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
| 112 |
80 101 111
|
3eqtr2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
| 113 |
56 112
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
| 114 |
113
|
ralrimivva |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
| 115 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 116 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
| 117 |
26 81 115 116 87 91
|
funcf2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) |
| 118 |
25 14 15 48 49 44 46 50 52 81
|
xpchom2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
| 119 |
118
|
feq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) <-> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) ) |
| 120 |
117 119
|
mpbid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) |
| 121 |
120
|
ffnd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
| 122 |
26 81 115 84 87 91
|
funcf2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
| 123 |
118
|
feq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) <-> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) ) |
| 124 |
122 123
|
mpbid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
| 125 |
124
|
ffnd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
| 126 |
|
eqfnov2 |
|- ( ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) /\ ( <. x , y >. ( 2nd ` F ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) <-> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) ) |
| 127 |
121 125 126
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) <-> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) ) |
| 128 |
114 127
|
mpbird |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
| 129 |
128
|
ralrimivva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
| 130 |
129
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` D ) A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
| 131 |
|
oveq2 |
|- ( v = <. z , w >. -> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) ) |
| 132 |
|
oveq2 |
|- ( v = <. z , w >. -> ( u ( 2nd ` F ) v ) = ( u ( 2nd ` F ) <. z , w >. ) ) |
| 133 |
131 132
|
eqeq12d |
|- ( v = <. z , w >. -> ( ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) ) ) |
| 134 |
133
|
ralxp |
|- ( A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) ) |
| 135 |
|
oveq1 |
|- ( u = <. x , y >. -> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) ) |
| 136 |
|
oveq1 |
|- ( u = <. x , y >. -> ( u ( 2nd ` F ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
| 137 |
135 136
|
eqeq12d |
|- ( u = <. x , y >. -> ( ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) <-> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
| 138 |
137
|
2ralbidv |
|- ( u = <. x , y >. -> ( A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
| 139 |
134 138
|
bitrid |
|- ( u = <. x , y >. -> ( A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
| 140 |
139
|
ralxp |
|- ( A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
| 141 |
130 140
|
sylibr |
|- ( ph -> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) |
| 142 |
26 31
|
funcfn2 |
|- ( ph -> ( 2nd ` ( <" C D E "> uncurryF G ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) |
| 143 |
26 35
|
funcfn2 |
|- ( ph -> ( 2nd ` F ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) |
| 144 |
|
eqfnov2 |
|- ( ( ( 2nd ` ( <" C D E "> uncurryF G ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( 2nd ` F ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) <-> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) ) |
| 145 |
142 143 144
|
syl2anc |
|- ( ph -> ( ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) <-> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) ) |
| 146 |
141 145
|
mpbird |
|- ( ph -> ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) ) |
| 147 |
40 146
|
opeq12d |
|- ( ph -> <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 148 |
|
1st2nd |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) -> ( <" C D E "> uncurryF G ) = <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. ) |
| 149 |
28 29 148
|
sylancr |
|- ( ph -> ( <" C D E "> uncurryF G ) = <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. ) |
| 150 |
|
1st2nd |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 151 |
28 4 150
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 152 |
147 149 151
|
3eqtr4d |
|- ( ph -> ( <" C D E "> uncurryF G ) = F ) |