Step |
Hyp |
Ref |
Expression |
1 |
|
uncfcurf.g |
|- G = ( <. C , D >. curryF F ) |
2 |
|
uncfcurf.c |
|- ( ph -> C e. Cat ) |
3 |
|
uncfcurf.d |
|- ( ph -> D e. Cat ) |
4 |
|
uncfcurf.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
5 |
|
eqid |
|- ( <" C D E "> uncurryF G ) = ( <" C D E "> uncurryF G ) |
6 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> D e. Cat ) |
7 |
|
funcrcl |
|- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
8 |
4 7
|
syl |
|- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
9 |
8
|
simprd |
|- ( ph -> E e. Cat ) |
10 |
9
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> E e. Cat ) |
11 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
12 |
1 11 2 3 4
|
curfcl |
|- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
16 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` C ) ) |
17 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
18 |
5 6 10 13 14 15 16 17
|
uncf1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
19 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> C e. Cat ) |
20 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
21 |
|
eqid |
|- ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` x ) |
22 |
1 14 19 6 20 15 16 21 17
|
curf11 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
23 |
18 22
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) |
24 |
23
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) |
25 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
26 |
25 14 15
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
28 |
|
relfunc |
|- Rel ( ( C Xc. D ) Func E ) |
29 |
5 3 9 12
|
uncfcl |
|- ( ph -> ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) |
30 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
31 |
28 29 30
|
sylancr |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
32 |
26 27 31
|
funcf1 |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` E ) ) |
33 |
32
|
ffnd |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) |
34 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
35 |
28 4 34
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
36 |
26 27 35
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` E ) ) |
37 |
36
|
ffnd |
|- ( ph -> ( 1st ` F ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) |
38 |
|
eqfnov2 |
|- ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) Fn ( ( Base ` C ) X. ( Base ` D ) ) /\ ( 1st ` F ) Fn ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) ) |
39 |
33 37 38
|
syl2anc |
|- ( ph -> ( ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) ( x ( 1st ` ( <" C D E "> uncurryF G ) ) y ) = ( x ( 1st ` F ) y ) ) ) |
40 |
24 39
|
mpbird |
|- ( ph -> ( 1st ` ( <" C D E "> uncurryF G ) ) = ( 1st ` F ) ) |
41 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> D e. Cat ) |
42 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> E e. Cat ) |
43 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> G e. ( C Func ( D FuncCat E ) ) ) |
44 |
16
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> x e. ( Base ` C ) ) |
45 |
44
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> x e. ( Base ` C ) ) |
46 |
17
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
47 |
46
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> y e. ( Base ` D ) ) |
48 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
49 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
50 |
|
simprl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> z e. ( Base ` C ) ) |
51 |
50
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> z e. ( Base ` C ) ) |
52 |
|
simprr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> w e. ( Base ` D ) ) |
53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> w e. ( Base ` D ) ) |
54 |
|
simprl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> f e. ( x ( Hom ` C ) z ) ) |
55 |
|
simprr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> g e. ( y ( Hom ` D ) w ) ) |
56 |
5 41 42 43 14 15 45 47 48 49 51 53 54 55
|
uncf2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) ) |
57 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> C e. Cat ) |
58 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
59 |
1 14 57 41 58 15 45 21 47
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
60 |
|
df-ov |
|- ( x ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. x , y >. ) |
61 |
59 60
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( ( 1st ` F ) ` <. x , y >. ) ) |
62 |
1 14 57 41 58 15 45 21 53
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( x ( 1st ` F ) w ) ) |
63 |
|
df-ov |
|- ( x ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. x , w >. ) |
64 |
62 63
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( ( 1st ` F ) ` <. x , w >. ) ) |
65 |
61 64
|
opeq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ) |
66 |
|
eqid |
|- ( ( 1st ` G ) ` z ) = ( ( 1st ` G ) ` z ) |
67 |
1 14 57 41 58 15 51 66 53
|
curf11 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( z ( 1st ` F ) w ) ) |
68 |
|
df-ov |
|- ( z ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. z , w >. ) |
69 |
67 68
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( ( 1st ` F ) ` <. z , w >. ) ) |
70 |
65 69
|
oveq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
71 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
72 |
|
eqid |
|- ( ( x ( 2nd ` G ) z ) ` f ) = ( ( x ( 2nd ` G ) z ) ` f ) |
73 |
1 14 57 41 58 15 48 71 45 51 54 72 53
|
curf2val |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) = ( f ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
74 |
|
df-ov |
|- ( f ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) |
75 |
73 74
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) |
76 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
77 |
1 14 57 41 58 15 45 21 47 49 76 53 55
|
curf12 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) = ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , w >. ) g ) ) |
78 |
|
df-ov |
|- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , w >. ) g ) = ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) |
79 |
77 78
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) = ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) |
80 |
70 75 79
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) = ( ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) ) |
81 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
82 |
|
eqid |
|- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
83 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
84 |
35
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
85 |
84
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
86 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
87 |
86
|
ad2antlr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
88 |
87
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
89 |
45 53
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
90 |
|
opelxpi |
|- ( ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
91 |
90
|
adantl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
92 |
91
|
adantr |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
93 |
14 48 76 57 45
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
94 |
93 55
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` x ) , g >. e. ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) w ) ) ) |
95 |
25 14 15 48 49 45 47 45 53 81
|
xpchom2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , w >. ) = ( ( x ( Hom ` C ) x ) X. ( y ( Hom ` D ) w ) ) ) |
96 |
94 95
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` x ) , g >. e. ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. x , w >. ) ) |
97 |
15 49 71 41 53
|
catidcl |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( Id ` D ) ` w ) e. ( w ( Hom ` D ) w ) ) |
98 |
54 97
|
opelxpd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( ( x ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
99 |
25 14 15 48 49 45 53 51 53 81
|
xpchom2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( x ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
100 |
98 99
|
eleqtrrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) ) |
101 |
26 81 82 83 85 88 89 92 96 100
|
funcco |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , y >. ) , ( ( 1st ` F ) ` <. x , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , y >. ( 2nd ` F ) <. x , w >. ) ` <. ( ( Id ` C ) ` x ) , g >. ) ) ) |
102 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
103 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
104 |
25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97
|
xpcco2 |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) = <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) |
105 |
104
|
fveq2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) ) |
106 |
|
df-ov |
|- ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) = ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` <. ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) , ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) >. ) |
107 |
105 106
|
eqtr4di |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) ) |
108 |
14 48 76 57 45 102 51 54
|
catrid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) = f ) |
109 |
15 49 71 41 47 103 53 55
|
catlid |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) = g ) |
110 |
108 109
|
oveq12d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( f ( <. x , x >. ( comp ` C ) z ) ( ( Id ` C ) ` x ) ) ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ( ( ( Id ` D ) ` w ) ( <. y , w >. ( comp ` D ) w ) g ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
111 |
107 110
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ` ( <. f , ( ( Id ` D ) ` w ) >. ( <. <. x , y >. , <. x , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. ( ( Id ` C ) ` x ) , g >. ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
112 |
80 101 111
|
3eqtr2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( ( ( ( x ( 2nd ` G ) z ) ` f ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) , ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( y ( 2nd ` ( ( 1st ` G ) ` x ) ) w ) ` g ) ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
113 |
56 112
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` C ) z ) /\ g e. ( y ( Hom ` D ) w ) ) ) -> ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
114 |
113
|
ralrimivva |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) |
115 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
116 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( 1st ` ( <" C D E "> uncurryF G ) ) ( ( C Xc. D ) Func E ) ( 2nd ` ( <" C D E "> uncurryF G ) ) ) |
117 |
26 81 115 116 87 91
|
funcf2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) |
118 |
25 14 15 48 49 44 46 50 52 81
|
xpchom2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
119 |
118
|
feq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) <-> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) ) |
120 |
117 119
|
mpbid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` ( <" C D E "> uncurryF G ) ) ` <. z , w >. ) ) ) |
121 |
120
|
ffnd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
122 |
26 81 115 84 87 91
|
funcf2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
123 |
118
|
feq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( <. x , y >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) <-> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) ) |
124 |
122 123
|
mpbid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) : ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) --> ( ( ( 1st ` F ) ` <. x , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
125 |
124
|
ffnd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` F ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) |
126 |
|
eqfnov2 |
|- ( ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) /\ ( <. x , y >. ( 2nd ` F ) <. z , w >. ) Fn ( ( x ( Hom ` C ) z ) X. ( y ( Hom ` D ) w ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) <-> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) ) |
127 |
121 125 126
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) <-> A. f e. ( x ( Hom ` C ) z ) A. g e. ( y ( Hom ` D ) w ) ( f ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) g ) = ( f ( <. x , y >. ( 2nd ` F ) <. z , w >. ) g ) ) ) |
128 |
114 127
|
mpbird |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) /\ ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) ) -> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
129 |
128
|
ralrimivva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) ) -> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
130 |
129
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` D ) A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
131 |
|
oveq2 |
|- ( v = <. z , w >. -> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) ) |
132 |
|
oveq2 |
|- ( v = <. z , w >. -> ( u ( 2nd ` F ) v ) = ( u ( 2nd ` F ) <. z , w >. ) ) |
133 |
131 132
|
eqeq12d |
|- ( v = <. z , w >. -> ( ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) ) ) |
134 |
133
|
ralxp |
|- ( A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) ) |
135 |
|
oveq1 |
|- ( u = <. x , y >. -> ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) ) |
136 |
|
oveq1 |
|- ( u = <. x , y >. -> ( u ( 2nd ` F ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
137 |
135 136
|
eqeq12d |
|- ( u = <. x , y >. -> ( ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) <-> ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
138 |
137
|
2ralbidv |
|- ( u = <. x , y >. -> ( A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( u ( 2nd ` F ) <. z , w >. ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
139 |
134 138
|
syl5bb |
|- ( u = <. x , y >. -> ( A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) ) |
140 |
139
|
ralxp |
|- ( A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` D ) A. z e. ( Base ` C ) A. w e. ( Base ` D ) ( <. x , y >. ( 2nd ` ( <" C D E "> uncurryF G ) ) <. z , w >. ) = ( <. x , y >. ( 2nd ` F ) <. z , w >. ) ) |
141 |
130 140
|
sylibr |
|- ( ph -> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) |
142 |
26 31
|
funcfn2 |
|- ( ph -> ( 2nd ` ( <" C D E "> uncurryF G ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) |
143 |
26 35
|
funcfn2 |
|- ( ph -> ( 2nd ` F ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) |
144 |
|
eqfnov2 |
|- ( ( ( 2nd ` ( <" C D E "> uncurryF G ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( 2nd ` F ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) <-> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) ) |
145 |
142 143 144
|
syl2anc |
|- ( ph -> ( ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) <-> A. u e. ( ( Base ` C ) X. ( Base ` D ) ) A. v e. ( ( Base ` C ) X. ( Base ` D ) ) ( u ( 2nd ` ( <" C D E "> uncurryF G ) ) v ) = ( u ( 2nd ` F ) v ) ) ) |
146 |
141 145
|
mpbird |
|- ( ph -> ( 2nd ` ( <" C D E "> uncurryF G ) ) = ( 2nd ` F ) ) |
147 |
40 146
|
opeq12d |
|- ( ph -> <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
148 |
|
1st2nd |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ ( <" C D E "> uncurryF G ) e. ( ( C Xc. D ) Func E ) ) -> ( <" C D E "> uncurryF G ) = <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. ) |
149 |
28 29 148
|
sylancr |
|- ( ph -> ( <" C D E "> uncurryF G ) = <. ( 1st ` ( <" C D E "> uncurryF G ) ) , ( 2nd ` ( <" C D E "> uncurryF G ) ) >. ) |
150 |
|
1st2nd |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
151 |
28 4 150
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
152 |
147 149 151
|
3eqtr4d |
|- ( ph -> ( <" C D E "> uncurryF G ) = F ) |