Metamath Proof Explorer


Theorem uncfcurf

Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses uncfcurf.g ⊒ 𝐺 = ( ⟨ 𝐢 , 𝐷 ⟩ curryF 𝐹 )
uncfcurf.c ⊒ ( πœ‘ β†’ 𝐢 ∈ Cat )
uncfcurf.d ⊒ ( πœ‘ β†’ 𝐷 ∈ Cat )
uncfcurf.f ⊒ ( πœ‘ β†’ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) )
Assertion uncfcurf ( πœ‘ β†’ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 uncfcurf.g ⊒ 𝐺 = ( ⟨ 𝐢 , 𝐷 ⟩ curryF 𝐹 )
2 uncfcurf.c ⊒ ( πœ‘ β†’ 𝐢 ∈ Cat )
3 uncfcurf.d ⊒ ( πœ‘ β†’ 𝐷 ∈ Cat )
4 uncfcurf.f ⊒ ( πœ‘ β†’ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) )
5 eqid ⊒ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) = ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 )
6 3 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝐷 ∈ Cat )
7 funcrcl ⊒ ( 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) β†’ ( ( 𝐢 Γ—c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) )
8 4 7 syl ⊒ ( πœ‘ β†’ ( ( 𝐢 Γ—c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) )
9 8 simprd ⊒ ( πœ‘ β†’ 𝐸 ∈ Cat )
10 9 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝐸 ∈ Cat )
11 eqid ⊒ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
12 1 11 2 3 4 curfcl ⊒ ( πœ‘ β†’ 𝐺 ∈ ( 𝐢 Func ( 𝐷 FuncCat 𝐸 ) ) )
13 12 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝐺 ∈ ( 𝐢 Func ( 𝐷 FuncCat 𝐸 ) ) )
14 eqid ⊒ ( Base β€˜ 𝐢 ) = ( Base β€˜ 𝐢 )
15 eqid ⊒ ( Base β€˜ 𝐷 ) = ( Base β€˜ 𝐷 )
16 simprl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
17 simprr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝑦 ∈ ( Base β€˜ 𝐷 ) )
18 5 6 10 13 14 15 16 17 uncf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( π‘₯ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑦 ) = ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) )
19 2 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝐢 ∈ Cat )
20 4 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) )
21 eqid ⊒ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) = ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ )
22 1 14 19 6 20 15 16 21 17 curf11 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) )
23 18 22 eqtrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( π‘₯ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) )
24 23 ralrimivva ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐷 ) ( π‘₯ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) )
25 eqid ⊒ ( 𝐢 Γ—c 𝐷 ) = ( 𝐢 Γ—c 𝐷 )
26 25 14 15 xpcbas ⊒ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) = ( Base β€˜ ( 𝐢 Γ—c 𝐷 ) )
27 eqid ⊒ ( Base β€˜ 𝐸 ) = ( Base β€˜ 𝐸 )
28 relfunc ⊒ Rel ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 )
29 5 3 9 12 uncfcl ⊒ ( πœ‘ β†’ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) )
30 1st2ndbr ⊒ ( ( Rel ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ∧ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ) β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) )
31 28 29 30 sylancr ⊒ ( πœ‘ β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) )
32 26 27 31 funcf1 ⊒ ( πœ‘ β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) : ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ⟢ ( Base β€˜ 𝐸 ) )
33 32 ffnd ⊒ ( πœ‘ β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
34 1st2ndbr ⊒ ( ( Rel ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ) β†’ ( 1st β€˜ 𝐹 ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ 𝐹 ) )
35 28 4 34 sylancr ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐹 ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ 𝐹 ) )
36 26 27 35 funcf1 ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐹 ) : ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ⟢ ( Base β€˜ 𝐸 ) )
37 36 ffnd ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐹 ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
38 eqfnov2 ⊒ ( ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ∧ ( 1st β€˜ 𝐹 ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ) β†’ ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 1st β€˜ 𝐹 ) ↔ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐷 ) ( π‘₯ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) ) )
39 33 37 38 syl2anc ⊒ ( πœ‘ β†’ ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 1st β€˜ 𝐹 ) ↔ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐷 ) ( π‘₯ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) ) )
40 24 39 mpbird ⊒ ( πœ‘ β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 1st β€˜ 𝐹 ) )
41 3 ad3antrrr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝐷 ∈ Cat )
42 9 ad3antrrr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝐸 ∈ Cat )
43 12 ad3antrrr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝐺 ∈ ( 𝐢 Func ( 𝐷 FuncCat 𝐸 ) ) )
44 16 adantr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
45 44 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
46 17 adantr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝑦 ∈ ( Base β€˜ 𝐷 ) )
47 46 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝑦 ∈ ( Base β€˜ 𝐷 ) )
48 eqid ⊒ ( Hom β€˜ 𝐢 ) = ( Hom β€˜ 𝐢 )
49 eqid ⊒ ( Hom β€˜ 𝐷 ) = ( Hom β€˜ 𝐷 )
50 simprl ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝑧 ∈ ( Base β€˜ 𝐢 ) )
51 50 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝑧 ∈ ( Base β€˜ 𝐢 ) )
52 simprr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ 𝑀 ∈ ( Base β€˜ 𝐷 ) )
53 52 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝑀 ∈ ( Base β€˜ 𝐷 ) )
54 simprl ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) )
55 simprr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) )
56 5 41 42 43 14 15 45 47 48 49 51 53 54 55 uncf2 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) = ( ( ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) β€˜ 𝑀 ) ( ⟨ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) , ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) ) ( ( 𝑦 ( 2nd β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) 𝑀 ) β€˜ 𝑔 ) ) )
57 2 ad3antrrr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝐢 ∈ Cat )
58 4 ad3antrrr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) )
59 1 14 57 41 58 15 45 21 47 curf11 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) )
60 df-ov ⊒ ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑦 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ )
61 59 60 eqtrdi ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) )
62 1 14 57 41 58 15 45 21 53 curf11 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) = ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑀 ) )
63 df-ov ⊒ ( π‘₯ ( 1st β€˜ 𝐹 ) 𝑀 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ )
64 62 63 eqtrdi ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ ) )
65 61 64 opeq12d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) , ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) ⟩ = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) , ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ ) ⟩ )
66 eqid ⊒ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) = ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 )
67 1 14 57 41 58 15 51 66 53 curf11 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) = ( 𝑧 ( 1st β€˜ 𝐹 ) 𝑀 ) )
68 df-ov ⊒ ( 𝑧 ( 1st β€˜ 𝐹 ) 𝑀 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ )
69 67 68 eqtrdi ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) = ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) )
70 65 69 oveq12d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ⟨ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) , ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) ) = ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) , ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) )
71 eqid ⊒ ( Id β€˜ 𝐷 ) = ( Id β€˜ 𝐷 )
72 eqid ⊒ ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) = ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 )
73 1 14 57 41 58 15 48 71 45 51 54 72 53 curf2val ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) β€˜ 𝑀 ) = ( 𝑓 ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ) )
74 df-ov ⊒ ( 𝑓 ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ) = ( ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ )
75 73 74 eqtrdi ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) β€˜ 𝑀 ) = ( ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ) )
76 eqid ⊒ ( Id β€˜ 𝐢 ) = ( Id β€˜ 𝐢 )
77 1 14 57 41 58 15 45 21 47 49 76 53 55 curf12 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) 𝑀 ) β€˜ 𝑔 ) = ( ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) 𝑔 ) )
78 df-ov ⊒ ( ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) 𝑔 ) = ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ )
79 77 78 eqtrdi ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) 𝑀 ) β€˜ 𝑔 ) = ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) )
80 70 75 79 oveq123d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) β€˜ 𝑀 ) ( ⟨ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) , ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) ) ( ( 𝑦 ( 2nd β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) 𝑀 ) β€˜ 𝑔 ) ) = ( ( ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) , ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) )
81 eqid ⊒ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) = ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) )
82 eqid ⊒ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) = ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) )
83 eqid ⊒ ( comp β€˜ 𝐸 ) = ( comp β€˜ 𝐸 )
84 35 ad2antrr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( 1st β€˜ 𝐹 ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ 𝐹 ) )
85 84 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( 1st β€˜ 𝐹 ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ 𝐹 ) )
86 opelxpi ⊒ ( ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) β†’ ⟨ π‘₯ , 𝑦 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
87 86 ad2antlr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ⟨ π‘₯ , 𝑦 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
88 87 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ π‘₯ , 𝑦 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
89 45 53 opelxpd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ π‘₯ , 𝑀 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
90 opelxpi ⊒ ( ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) β†’ ⟨ 𝑧 , 𝑀 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
91 90 adantl ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ⟨ 𝑧 , 𝑀 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
92 91 adantr ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ 𝑧 , 𝑀 ⟩ ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) )
93 14 48 76 57 45 catidcl ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) π‘₯ ) )
94 93 55 opelxpd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ∈ ( ( π‘₯ ( Hom β€˜ 𝐢 ) π‘₯ ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
95 25 14 15 48 49 45 47 45 53 81 xpchom2 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ π‘₯ , 𝑀 ⟩ ) = ( ( π‘₯ ( Hom β€˜ 𝐢 ) π‘₯ ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
96 94 95 eleqtrrd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ∈ ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ π‘₯ , 𝑀 ⟩ ) )
97 15 49 71 41 53 catidcl ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ∈ ( 𝑀 ( Hom β€˜ 𝐷 ) 𝑀 ) )
98 54 97 opelxpd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ∈ ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑀 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
99 25 14 15 48 49 45 53 51 53 81 xpchom2 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ⟨ π‘₯ , 𝑀 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑀 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
100 98 99 eleqtrrd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ∈ ( ⟨ π‘₯ , 𝑀 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) )
101 26 81 82 83 85 88 89 92 96 100 funcco ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ( ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ( ⟨ ⟨ π‘₯ , 𝑦 ⟩ , ⟨ π‘₯ , 𝑀 ⟩ ⟩ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) = ( ( ( ⟨ π‘₯ , 𝑀 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) , ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑀 ⟩ ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ π‘₯ , 𝑀 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) )
102 eqid ⊒ ( comp β€˜ 𝐢 ) = ( comp β€˜ 𝐢 )
103 eqid ⊒ ( comp β€˜ 𝐷 ) = ( comp β€˜ 𝐷 )
104 25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97 xpcco2 ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ( ⟨ ⟨ π‘₯ , 𝑦 ⟩ , ⟨ π‘₯ , 𝑀 ⟩ ⟩ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) = ⟨ ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) , ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ⟩ )
105 104 fveq2d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ( ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ( ⟨ ⟨ π‘₯ , 𝑦 ⟩ , ⟨ π‘₯ , 𝑀 ⟩ ⟩ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) = ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) , ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ⟩ ) )
106 df-ov ⊒ ( ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ) = ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ⟨ ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) , ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ⟩ )
107 105 106 eqtr4di ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ( ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ( ⟨ ⟨ π‘₯ , 𝑦 ⟩ , ⟨ π‘₯ , 𝑀 ⟩ ⟩ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) = ( ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ) )
108 14 48 76 57 45 102 51 54 catrid ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) = 𝑓 )
109 15 49 71 41 47 103 53 55 catlid ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) = 𝑔 )
110 108 109 oveq12d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( 𝑓 ( ⟨ π‘₯ , π‘₯ ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ( ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ( ⟨ 𝑦 , 𝑀 ⟩ ( comp β€˜ 𝐷 ) 𝑀 ) 𝑔 ) ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) )
111 107 110 eqtrd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) β€˜ ( ⟨ 𝑓 , ( ( Id β€˜ 𝐷 ) β€˜ 𝑀 ) ⟩ ( ⟨ ⟨ π‘₯ , 𝑦 ⟩ , ⟨ π‘₯ , 𝑀 ⟩ ⟩ ( comp β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟨ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) , 𝑔 ⟩ ) ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) )
112 80 101 111 3eqtr2d ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑓 ) β€˜ 𝑀 ) ( ⟨ ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑦 ) , ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) β€˜ 𝑀 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) β€˜ 𝑀 ) ) ( ( 𝑦 ( 2nd β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) 𝑀 ) β€˜ 𝑔 ) ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) )
113 56 112 eqtrd ⊒ ( ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) )
114 113 ralrimivva ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ βˆ€ 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) βˆ€ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) )
115 eqid ⊒ ( Hom β€˜ 𝐸 ) = ( Hom β€˜ 𝐸 )
116 31 ad2antrr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) )
117 26 81 115 116 87 91 funcf2 ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟢ ( ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) )
118 25 14 15 48 49 44 46 50 52 81 xpchom2 ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
119 118 feq2d ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟢ ( ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ↔ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ⟢ ( ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ) )
120 117 119 mpbid ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ⟢ ( ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) )
121 120 ffnd ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) Fn ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
122 26 81 115 84 87 91 funcf2 ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) )
123 118 feq2d ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ⟨ π‘₯ , 𝑦 ⟩ ( Hom β€˜ ( 𝐢 Γ—c 𝐷 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ↔ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) ) )
124 122 123 mpbid ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) : ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ π‘₯ , 𝑦 ⟩ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐹 ) β€˜ ⟨ 𝑧 , 𝑀 ⟩ ) ) )
125 124 ffnd ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) Fn ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) )
126 eqfnov2 ⊒ ( ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) Fn ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ∧ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) Fn ( ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) Γ— ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ↔ βˆ€ 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) βˆ€ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) ) )
127 121 125 126 syl2anc ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ↔ βˆ€ 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) βˆ€ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐷 ) 𝑀 ) ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) = ( 𝑓 ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) 𝑔 ) ) )
128 114 127 mpbird ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑀 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
129 128 ralrimivva ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐷 ) ) ) β†’ βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
130 129 ralrimivva ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐷 ) βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
131 oveq2 ⊒ ( 𝑣 = ⟨ 𝑧 , 𝑀 ⟩ β†’ ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) )
132 oveq2 ⊒ ( 𝑣 = ⟨ 𝑧 , 𝑀 ⟩ β†’ ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
133 131 132 eqeq12d ⊒ ( 𝑣 = ⟨ 𝑧 , 𝑀 ⟩ β†’ ( ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ↔ ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ) )
134 133 ralxp ⊒ ( βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ↔ βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
135 oveq1 ⊒ ( 𝑒 = ⟨ π‘₯ , 𝑦 ⟩ β†’ ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) )
136 oveq1 ⊒ ( 𝑒 = ⟨ π‘₯ , 𝑦 ⟩ β†’ ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
137 135 136 eqeq12d ⊒ ( 𝑒 = ⟨ π‘₯ , 𝑦 ⟩ β†’ ( ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ↔ ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ) )
138 137 2ralbidv ⊒ ( 𝑒 = ⟨ π‘₯ , 𝑦 ⟩ β†’ ( βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ↔ βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ) )
139 134 138 bitrid ⊒ ( 𝑒 = ⟨ π‘₯ , 𝑦 ⟩ β†’ ( βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ↔ βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) ) )
140 139 ralxp ⊒ ( βˆ€ 𝑒 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ↔ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐷 ) βˆ€ 𝑧 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑀 ∈ ( Base β€˜ 𝐷 ) ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟨ 𝑧 , 𝑀 ⟩ ) = ( ⟨ π‘₯ , 𝑦 ⟩ ( 2nd β€˜ 𝐹 ) ⟨ 𝑧 , 𝑀 ⟩ ) )
141 130 140 sylibr ⊒ ( πœ‘ β†’ βˆ€ 𝑒 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) )
142 26 31 funcfn2 ⊒ ( πœ‘ β†’ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) Fn ( ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) Γ— ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ) )
143 26 35 funcfn2 ⊒ ( πœ‘ β†’ ( 2nd β€˜ 𝐹 ) Fn ( ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) Γ— ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ) )
144 eqfnov2 ⊒ ( ( ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) Fn ( ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) Γ— ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ) ∧ ( 2nd β€˜ 𝐹 ) Fn ( ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) Γ— ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ) ) β†’ ( ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 2nd β€˜ 𝐹 ) ↔ βˆ€ 𝑒 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ) )
145 142 143 144 syl2anc ⊒ ( πœ‘ β†’ ( ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 2nd β€˜ 𝐹 ) ↔ βˆ€ 𝑒 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) βˆ€ 𝑣 ∈ ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐷 ) ) ( 𝑒 ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑒 ( 2nd β€˜ 𝐹 ) 𝑣 ) ) )
146 141 145 mpbird ⊒ ( πœ‘ β†’ ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) = ( 2nd β€˜ 𝐹 ) )
147 40 146 opeq12d ⊒ ( πœ‘ β†’ ⟨ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) , ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟩ = ⟨ ( 1st β€˜ 𝐹 ) , ( 2nd β€˜ 𝐹 ) ⟩ )
148 1st2nd ⊒ ( ( Rel ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ∧ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ) β†’ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) = ⟨ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) , ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟩ )
149 28 29 148 sylancr ⊒ ( πœ‘ β†’ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) = ⟨ ( 1st β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) , ( 2nd β€˜ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) ) ⟩ )
150 1st2nd ⊒ ( ( Rel ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐢 Γ—c 𝐷 ) Func 𝐸 ) ) β†’ 𝐹 = ⟨ ( 1st β€˜ 𝐹 ) , ( 2nd β€˜ 𝐹 ) ⟩ )
151 28 4 150 sylancr ⊒ ( πœ‘ β†’ 𝐹 = ⟨ ( 1st β€˜ 𝐹 ) , ( 2nd β€˜ 𝐹 ) ⟩ )
152 147 149 151 3eqtr4d ⊒ ( πœ‘ β†’ ( βŸ¨β€œ 𝐢 𝐷 𝐸 β€βŸ© uncurryF 𝐺 ) = 𝐹 )