Step |
Hyp |
Ref |
Expression |
1 |
|
uncfcurf.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
2 |
|
uncfcurf.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
uncfcurf.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
uncfcurf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
5 |
|
eqid |
⊢ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) |
6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐷 ∈ Cat ) |
7 |
|
funcrcl |
⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐸 ∈ Cat ) |
11 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
12 |
1 11 2 3 4
|
curfcl |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
18 |
5 6 10 13 14 15 16 17
|
uncf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐶 ∈ Cat ) |
20 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
21 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) |
22 |
1 14 19 6 20 15 16 21 17
|
curf11 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
25 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
26 |
25 14 15
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
28 |
|
relfunc |
⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) |
29 |
5 3 9 12
|
uncfcl |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
30 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) |
31 |
28 29 30
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) |
32 |
26 27 31
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ⟶ ( Base ‘ 𝐸 ) ) |
33 |
32
|
ffnd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
34 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
35 |
28 4 34
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
36 |
26 27 35
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ⟶ ( Base ‘ 𝐸 ) ) |
37 |
36
|
ffnd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
38 |
|
eqfnov2 |
⊢ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∧ ( 1st ‘ 𝐹 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
39 |
33 37 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
40 |
24 39
|
mpbird |
⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ) |
41 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat ) |
42 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐸 ∈ Cat ) |
43 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
44 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
46 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
48 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
49 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
52 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) |
54 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
55 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
56 |
5 41 42 43 14 15 45 47 48 49 51 53 54 55
|
uncf2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) ) |
57 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat ) |
58 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
59 |
1 14 57 41 58 15 45 21 47
|
curf11 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
60 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
61 |
59 60
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
62 |
1 14 57 41 58 15 45 21 53
|
curf11 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
63 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) |
64 |
62 63
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) ) |
65 |
61 64
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ) |
66 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) |
67 |
1 14 57 41 58 15 51 66 53
|
curf11 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
68 |
|
df-ov |
⊢ ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) |
69 |
67 68
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) |
70 |
65 69
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
71 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
72 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) |
73 |
1 14 57 41 58 15 48 71 45 51 54 72 53
|
curf2val |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
74 |
|
df-ov |
⊢ ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
75 |
73 74
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
76 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
77 |
1 14 57 41 58 15 45 21 47 49 76 53 55
|
curf12 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) 𝑔 ) ) |
78 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) 𝑔 ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) |
79 |
77 78
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) |
80 |
70 75 79
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) = ( ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) ) |
81 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
82 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) |
83 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
84 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
85 |
84
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
86 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
89 |
45 53
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
90 |
|
opelxpi |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
91 |
90
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
92 |
91
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
93 |
14 48 76 57 45
|
catidcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
94 |
93 55
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
95 |
25 14 15 48 49 45 47 45 53 81
|
xpchom2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
96 |
94 95
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ∈ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑤 〉 ) ) |
97 |
15 49 71 41 53
|
catidcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
98 |
54 97
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
99 |
25 14 15 48 49 45 53 51 53 81
|
xpchom2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
100 |
98 99
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
101 |
26 81 82 83 85 88 89 92 96 100
|
funcco |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) ) |
102 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
103 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
104 |
25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97
|
xpcco2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) = 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
105 |
104
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) ) |
106 |
|
df-ov |
⊢ ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
107 |
105 106
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) ) |
108 |
14 48 76 57 45 102 51 54
|
catrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = 𝑓 ) |
109 |
15 49 71 41 47 103 53 55
|
catlid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) = 𝑔 ) |
110 |
108 109
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
111 |
107 110
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
112 |
80 101 111
|
3eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
113 |
56 112
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
114 |
113
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
115 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
116 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) |
117 |
26 81 115 116 87 91
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
118 |
25 14 15 48 49 44 46 50 52 81
|
xpchom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
119 |
118
|
feq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) ) |
120 |
117 119
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
121 |
120
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
122 |
26 81 115 84 87 91
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
123 |
118
|
feq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) ) |
124 |
122 123
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
125 |
124
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
126 |
|
eqfnov2 |
⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ∧ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) ) |
127 |
121 125 126
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) ) |
128 |
114 127
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
129 |
128
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
130 |
129
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
131 |
|
oveq2 |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
132 |
|
oveq2 |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
133 |
131 132
|
eqeq12d |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
134 |
133
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
135 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
136 |
|
oveq1 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
137 |
135 136
|
eqeq12d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
138 |
137
|
2ralbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
139 |
134 138
|
syl5bb |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
140 |
139
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
141 |
130 140
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) |
142 |
26 31
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) |
143 |
26 35
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) |
144 |
|
eqfnov2 |
⊢ ( ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ∧ ( 2nd ‘ 𝐹 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) → ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ↔ ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) ) |
145 |
142 143 144
|
syl2anc |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ↔ ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) ) |
146 |
141 145
|
mpbird |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ) |
147 |
40 146
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
148 |
|
1st2nd |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 ) |
149 |
28 29 148
|
sylancr |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 ) |
150 |
|
1st2nd |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
151 |
28 4 150
|
sylancr |
⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
152 |
147 149 151
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 𝐹 ) |