| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrghm.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrghm.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrghm.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrghm.u |
|- U = ( Unit ` Z ) |
| 5 |
|
dchrghm.h |
|- H = ( ( mulGrp ` Z ) |`s U ) |
| 6 |
|
dchrghm.m |
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 7 |
|
dchrghm.x |
|- ( ph -> X e. D ) |
| 8 |
1 2 3
|
dchrmhm |
|- D C_ ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) |
| 9 |
8 7
|
sselid |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
| 10 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
| 11 |
7 10
|
syl |
|- ( ph -> N e. NN ) |
| 12 |
11
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 13 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
| 14 |
12 13
|
syl |
|- ( ph -> Z e. CRing ) |
| 15 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
| 16 |
14 15
|
syl |
|- ( ph -> Z e. Ring ) |
| 17 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 18 |
4 17
|
unitsubm |
|- ( Z e. Ring -> U e. ( SubMnd ` ( mulGrp ` Z ) ) ) |
| 19 |
16 18
|
syl |
|- ( ph -> U e. ( SubMnd ` ( mulGrp ` Z ) ) ) |
| 20 |
5
|
resmhm |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ U e. ( SubMnd ` ( mulGrp ` Z ) ) ) -> ( X |` U ) e. ( H MndHom ( mulGrp ` CCfld ) ) ) |
| 21 |
9 19 20
|
syl2anc |
|- ( ph -> ( X |` U ) e. ( H MndHom ( mulGrp ` CCfld ) ) ) |
| 22 |
|
cnring |
|- CCfld e. Ring |
| 23 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 24 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 25 |
|
cndrng |
|- CCfld e. DivRing |
| 26 |
23 24 25
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 27 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 28 |
26 27
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 29 |
22 28
|
ax-mp |
|- ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 30 |
|
df-ima |
|- ( X " U ) = ran ( X |` U ) |
| 31 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 32 |
1 2 3 31 7
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
| 33 |
31 4
|
unitss |
|- U C_ ( Base ` Z ) |
| 34 |
33
|
sseli |
|- ( x e. U -> x e. ( Base ` Z ) ) |
| 35 |
|
ffvelcdm |
|- ( ( X : ( Base ` Z ) --> CC /\ x e. ( Base ` Z ) ) -> ( X ` x ) e. CC ) |
| 36 |
32 34 35
|
syl2an |
|- ( ( ph /\ x e. U ) -> ( X ` x ) e. CC ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. U ) -> x e. U ) |
| 38 |
7
|
adantr |
|- ( ( ph /\ x e. U ) -> X e. D ) |
| 39 |
34
|
adantl |
|- ( ( ph /\ x e. U ) -> x e. ( Base ` Z ) ) |
| 40 |
1 2 3 31 4 38 39
|
dchrn0 |
|- ( ( ph /\ x e. U ) -> ( ( X ` x ) =/= 0 <-> x e. U ) ) |
| 41 |
37 40
|
mpbird |
|- ( ( ph /\ x e. U ) -> ( X ` x ) =/= 0 ) |
| 42 |
|
eldifsn |
|- ( ( X ` x ) e. ( CC \ { 0 } ) <-> ( ( X ` x ) e. CC /\ ( X ` x ) =/= 0 ) ) |
| 43 |
36 41 42
|
sylanbrc |
|- ( ( ph /\ x e. U ) -> ( X ` x ) e. ( CC \ { 0 } ) ) |
| 44 |
43
|
ralrimiva |
|- ( ph -> A. x e. U ( X ` x ) e. ( CC \ { 0 } ) ) |
| 45 |
32
|
ffund |
|- ( ph -> Fun X ) |
| 46 |
32
|
fdmd |
|- ( ph -> dom X = ( Base ` Z ) ) |
| 47 |
33 46
|
sseqtrrid |
|- ( ph -> U C_ dom X ) |
| 48 |
|
funimass4 |
|- ( ( Fun X /\ U C_ dom X ) -> ( ( X " U ) C_ ( CC \ { 0 } ) <-> A. x e. U ( X ` x ) e. ( CC \ { 0 } ) ) ) |
| 49 |
45 47 48
|
syl2anc |
|- ( ph -> ( ( X " U ) C_ ( CC \ { 0 } ) <-> A. x e. U ( X ` x ) e. ( CC \ { 0 } ) ) ) |
| 50 |
44 49
|
mpbird |
|- ( ph -> ( X " U ) C_ ( CC \ { 0 } ) ) |
| 51 |
30 50
|
eqsstrrid |
|- ( ph -> ran ( X |` U ) C_ ( CC \ { 0 } ) ) |
| 52 |
6
|
resmhm2b |
|- ( ( ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ ran ( X |` U ) C_ ( CC \ { 0 } ) ) -> ( ( X |` U ) e. ( H MndHom ( mulGrp ` CCfld ) ) <-> ( X |` U ) e. ( H MndHom M ) ) ) |
| 53 |
29 51 52
|
sylancr |
|- ( ph -> ( ( X |` U ) e. ( H MndHom ( mulGrp ` CCfld ) ) <-> ( X |` U ) e. ( H MndHom M ) ) ) |
| 54 |
21 53
|
mpbid |
|- ( ph -> ( X |` U ) e. ( H MndHom M ) ) |
| 55 |
4 5
|
unitgrp |
|- ( Z e. Ring -> H e. Grp ) |
| 56 |
16 55
|
syl |
|- ( ph -> H e. Grp ) |
| 57 |
6
|
cnmgpabl |
|- M e. Abel |
| 58 |
|
ablgrp |
|- ( M e. Abel -> M e. Grp ) |
| 59 |
57 58
|
ax-mp |
|- M e. Grp |
| 60 |
|
ghmmhmb |
|- ( ( H e. Grp /\ M e. Grp ) -> ( H GrpHom M ) = ( H MndHom M ) ) |
| 61 |
56 59 60
|
sylancl |
|- ( ph -> ( H GrpHom M ) = ( H MndHom M ) ) |
| 62 |
54 61
|
eleqtrrd |
|- ( ph -> ( X |` U ) e. ( H GrpHom M ) ) |