| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1o.a |
|- A = ( Base ` C ) |
| 2 |
|
diag1f1o.d |
|- ( ph -> D e. TermCat ) |
| 3 |
|
termcfuncval.k |
|- ( ph -> K e. ( D Func C ) ) |
| 4 |
|
termcfuncval.b |
|- B = ( Base ` D ) |
| 5 |
|
termcfuncval.y |
|- ( ph -> Y e. B ) |
| 6 |
|
termcfuncval.x |
|- X = ( ( 1st ` K ) ` Y ) |
| 7 |
|
diag1f1olem.l |
|- L = ( C DiagFunc D ) |
| 8 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 9 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 10 |
1 2 3 4 5 6 8 9
|
termcfuncval |
|- ( ph -> ( X e. A /\ K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) ) |
| 11 |
10
|
simpld |
|- ( ph -> X e. A ) |
| 12 |
2 4 5
|
termcbas2 |
|- ( ph -> B = { Y } ) |
| 13 |
12
|
xpeq1d |
|- ( ph -> ( B X. { X } ) = ( { Y } X. { X } ) ) |
| 14 |
|
xpsng |
|- ( ( Y e. B /\ X e. A ) -> ( { Y } X. { X } ) = { <. Y , X >. } ) |
| 15 |
5 11 14
|
syl2anc |
|- ( ph -> ( { Y } X. { X } ) = { <. Y , X >. } ) |
| 16 |
13 15
|
eqtrd |
|- ( ph -> ( B X. { X } ) = { <. Y , X >. } ) |
| 17 |
12
|
adantr |
|- ( ( ph /\ y e. B ) -> B = { Y } ) |
| 18 |
2
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> D e. TermCat ) |
| 19 |
|
simprl |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y e. B ) |
| 20 |
|
simprr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z e. B ) |
| 21 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> Y e. B ) |
| 23 |
18 4 19 20 21 9 22
|
termchom2 |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( Hom ` D ) z ) = { ( ( Id ` D ) ` Y ) } ) |
| 24 |
23
|
xpeq1d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) = ( { ( ( Id ` D ) ` Y ) } X. { ( ( Id ` C ) ` X ) } ) ) |
| 25 |
|
fvex |
|- ( ( Id ` D ) ` Y ) e. _V |
| 26 |
|
fvex |
|- ( ( Id ` C ) ` X ) e. _V |
| 27 |
25 26
|
xpsn |
|- ( { ( ( Id ` D ) ` Y ) } X. { ( ( Id ` C ) ` X ) } ) = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } |
| 28 |
24 27
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
| 29 |
12 17 28
|
mpoeq123dva |
|- ( ph -> ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) = ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) ) |
| 30 |
|
snex |
|- { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V |
| 31 |
30
|
a1i |
|- ( ph -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V ) |
| 32 |
|
eqid |
|- ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
| 33 |
|
eqidd |
|- ( y = Y -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
| 34 |
|
eqidd |
|- ( z = Y -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
| 35 |
32 33 34
|
mposn |
|- ( ( Y e. B /\ Y e. B /\ { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V ) -> ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 36 |
5 5 31 35
|
syl3anc |
|- ( ph -> ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 37 |
29 36
|
eqtrd |
|- ( ph -> ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 38 |
16 37
|
opeq12d |
|- ( ph -> <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) |
| 39 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 40 |
39
|
funcrcl3 |
|- ( ph -> C e. Cat ) |
| 41 |
2
|
termccd |
|- ( ph -> D e. Cat ) |
| 42 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 43 |
7 40 41 1 11 42 4 21 8
|
diag1a |
|- ( ph -> ( ( 1st ` L ) ` X ) = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 44 |
10
|
simprd |
|- ( ph -> K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) |
| 45 |
38 43 44
|
3eqtr4rd |
|- ( ph -> K = ( ( 1st ` L ) ` X ) ) |
| 46 |
11 45
|
jca |
|- ( ph -> ( X e. A /\ K = ( ( 1st ` L ) ` X ) ) ) |