| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1o.a |
|- A = ( Base ` C ) |
| 2 |
|
diag1f1o.d |
|- ( ph -> D e. TermCat ) |
| 3 |
|
termcfuncval.k |
|- ( ph -> K e. ( D Func C ) ) |
| 4 |
|
termcfuncval.b |
|- B = ( Base ` D ) |
| 5 |
|
termcfuncval.y |
|- ( ph -> Y e. B ) |
| 6 |
|
termcfuncval.x |
|- X = ( ( 1st ` K ) ` Y ) |
| 7 |
|
termcfuncval.1 |
|- .1. = ( Id ` C ) |
| 8 |
|
termcfuncval.i |
|- I = ( Id ` D ) |
| 9 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 10 |
4 1 9
|
funcf1 |
|- ( ph -> ( 1st ` K ) : B --> A ) |
| 11 |
10 5
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` K ) ` Y ) e. A ) |
| 12 |
6 11
|
eqeltrid |
|- ( ph -> X e. A ) |
| 13 |
|
relfunc |
|- Rel ( D Func C ) |
| 14 |
|
1st2nd |
|- ( ( Rel ( D Func C ) /\ K e. ( D Func C ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 15 |
13 3 14
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 16 |
2 4 5
|
termcbas2 |
|- ( ph -> B = { Y } ) |
| 17 |
16
|
feq2d |
|- ( ph -> ( ( 1st ` K ) : B --> A <-> ( 1st ` K ) : { Y } --> A ) ) |
| 18 |
10 17
|
mpbid |
|- ( ph -> ( 1st ` K ) : { Y } --> A ) |
| 19 |
|
fsn2g |
|- ( Y e. B -> ( ( 1st ` K ) : { Y } --> A <-> ( ( ( 1st ` K ) ` Y ) e. A /\ ( 1st ` K ) = { <. Y , ( ( 1st ` K ) ` Y ) >. } ) ) ) |
| 20 |
5 19
|
syl |
|- ( ph -> ( ( 1st ` K ) : { Y } --> A <-> ( ( ( 1st ` K ) ` Y ) e. A /\ ( 1st ` K ) = { <. Y , ( ( 1st ` K ) ` Y ) >. } ) ) ) |
| 21 |
18 20
|
mpbid |
|- ( ph -> ( ( ( 1st ` K ) ` Y ) e. A /\ ( 1st ` K ) = { <. Y , ( ( 1st ` K ) ` Y ) >. } ) ) |
| 22 |
21
|
simprd |
|- ( ph -> ( 1st ` K ) = { <. Y , ( ( 1st ` K ) ` Y ) >. } ) |
| 23 |
6
|
opeq2i |
|- <. Y , X >. = <. Y , ( ( 1st ` K ) ` Y ) >. |
| 24 |
23
|
sneqi |
|- { <. Y , X >. } = { <. Y , ( ( 1st ` K ) ` Y ) >. } |
| 25 |
22 24
|
eqtr4di |
|- ( ph -> ( 1st ` K ) = { <. Y , X >. } ) |
| 26 |
4 9
|
funcfn2 |
|- ( ph -> ( 2nd ` K ) Fn ( B X. B ) ) |
| 27 |
16
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( { Y } X. { Y } ) ) |
| 28 |
|
xpsng |
|- ( ( Y e. B /\ Y e. B ) -> ( { Y } X. { Y } ) = { <. Y , Y >. } ) |
| 29 |
5 5 28
|
syl2anc |
|- ( ph -> ( { Y } X. { Y } ) = { <. Y , Y >. } ) |
| 30 |
27 29
|
eqtrd |
|- ( ph -> ( B X. B ) = { <. Y , Y >. } ) |
| 31 |
30
|
fneq2d |
|- ( ph -> ( ( 2nd ` K ) Fn ( B X. B ) <-> ( 2nd ` K ) Fn { <. Y , Y >. } ) ) |
| 32 |
26 31
|
mpbid |
|- ( ph -> ( 2nd ` K ) Fn { <. Y , Y >. } ) |
| 33 |
|
opex |
|- <. Y , Y >. e. _V |
| 34 |
33
|
fnsnb |
|- ( ( 2nd ` K ) Fn { <. Y , Y >. } <-> ( 2nd ` K ) = { <. <. Y , Y >. , ( ( 2nd ` K ) ` <. Y , Y >. ) >. } ) |
| 35 |
32 34
|
sylib |
|- ( ph -> ( 2nd ` K ) = { <. <. Y , Y >. , ( ( 2nd ` K ) ` <. Y , Y >. ) >. } ) |
| 36 |
|
df-ov |
|- ( Y ( 2nd ` K ) Y ) = ( ( 2nd ` K ) ` <. Y , Y >. ) |
| 37 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 38 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 39 |
4 37 38 9 5 5
|
funcf2 |
|- ( ph -> ( Y ( 2nd ` K ) Y ) : ( Y ( Hom ` D ) Y ) --> ( ( ( 1st ` K ) ` Y ) ( Hom ` C ) ( ( 1st ` K ) ` Y ) ) ) |
| 40 |
2 4 5 5 37 8
|
termchom |
|- ( ph -> ( Y ( Hom ` D ) Y ) = { ( I ` Y ) } ) |
| 41 |
40
|
eqcomd |
|- ( ph -> { ( I ` Y ) } = ( Y ( Hom ` D ) Y ) ) |
| 42 |
6 6
|
oveq12i |
|- ( X ( Hom ` C ) X ) = ( ( ( 1st ` K ) ` Y ) ( Hom ` C ) ( ( 1st ` K ) ` Y ) ) |
| 43 |
42
|
a1i |
|- ( ph -> ( X ( Hom ` C ) X ) = ( ( ( 1st ` K ) ` Y ) ( Hom ` C ) ( ( 1st ` K ) ` Y ) ) ) |
| 44 |
41 43
|
feq23d |
|- ( ph -> ( ( Y ( 2nd ` K ) Y ) : { ( I ` Y ) } --> ( X ( Hom ` C ) X ) <-> ( Y ( 2nd ` K ) Y ) : ( Y ( Hom ` D ) Y ) --> ( ( ( 1st ` K ) ` Y ) ( Hom ` C ) ( ( 1st ` K ) ` Y ) ) ) ) |
| 45 |
39 44
|
mpbird |
|- ( ph -> ( Y ( 2nd ` K ) Y ) : { ( I ` Y ) } --> ( X ( Hom ` C ) X ) ) |
| 46 |
|
fvex |
|- ( I ` Y ) e. _V |
| 47 |
46
|
fsn2 |
|- ( ( Y ( 2nd ` K ) Y ) : { ( I ` Y ) } --> ( X ( Hom ` C ) X ) <-> ( ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) e. ( X ( Hom ` C ) X ) /\ ( Y ( 2nd ` K ) Y ) = { <. ( I ` Y ) , ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) >. } ) ) |
| 48 |
45 47
|
sylib |
|- ( ph -> ( ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) e. ( X ( Hom ` C ) X ) /\ ( Y ( 2nd ` K ) Y ) = { <. ( I ` Y ) , ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) >. } ) ) |
| 49 |
48
|
simprd |
|- ( ph -> ( Y ( 2nd ` K ) Y ) = { <. ( I ` Y ) , ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) >. } ) |
| 50 |
4 8 7 9 5
|
funcid |
|- ( ph -> ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) = ( .1. ` ( ( 1st ` K ) ` Y ) ) ) |
| 51 |
6
|
fveq2i |
|- ( .1. ` X ) = ( .1. ` ( ( 1st ` K ) ` Y ) ) |
| 52 |
50 51
|
eqtr4di |
|- ( ph -> ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) = ( .1. ` X ) ) |
| 53 |
52
|
opeq2d |
|- ( ph -> <. ( I ` Y ) , ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) >. = <. ( I ` Y ) , ( .1. ` X ) >. ) |
| 54 |
53
|
sneqd |
|- ( ph -> { <. ( I ` Y ) , ( ( Y ( 2nd ` K ) Y ) ` ( I ` Y ) ) >. } = { <. ( I ` Y ) , ( .1. ` X ) >. } ) |
| 55 |
49 54
|
eqtrd |
|- ( ph -> ( Y ( 2nd ` K ) Y ) = { <. ( I ` Y ) , ( .1. ` X ) >. } ) |
| 56 |
36 55
|
eqtr3id |
|- ( ph -> ( ( 2nd ` K ) ` <. Y , Y >. ) = { <. ( I ` Y ) , ( .1. ` X ) >. } ) |
| 57 |
56
|
opeq2d |
|- ( ph -> <. <. Y , Y >. , ( ( 2nd ` K ) ` <. Y , Y >. ) >. = <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. ) |
| 58 |
57
|
sneqd |
|- ( ph -> { <. <. Y , Y >. , ( ( 2nd ` K ) ` <. Y , Y >. ) >. } = { <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. } ) |
| 59 |
35 58
|
eqtrd |
|- ( ph -> ( 2nd ` K ) = { <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. } ) |
| 60 |
25 59
|
opeq12d |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. } >. ) |
| 61 |
15 60
|
eqtrd |
|- ( ph -> K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. } >. ) |
| 62 |
12 61
|
jca |
|- ( ph -> ( X e. A /\ K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( I ` Y ) , ( .1. ` X ) >. } >. } >. ) ) |