| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1o.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
diag1f1o.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 3 |
|
termcfuncval.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |
| 4 |
|
termcfuncval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
termcfuncval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
termcfuncval.x |
⊢ 𝑋 = ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) |
| 7 |
|
termcfuncval.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 8 |
|
termcfuncval.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
| 9 |
3
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 10 |
4 1 9
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ) |
| 11 |
10 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ) |
| 12 |
6 11
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 13 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐶 ) |
| 14 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 15 |
13 3 14
|
sylancr |
⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 16 |
2 4 5
|
termcbas2 |
⊢ ( 𝜑 → 𝐵 = { 𝑌 } ) |
| 17 |
16
|
feq2d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ↔ ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ) ) |
| 18 |
10 17
|
mpbid |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ) |
| 19 |
|
fsn2g |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ↔ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) ) |
| 20 |
5 19
|
syl |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ↔ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) ) |
| 21 |
18 20
|
mpbid |
⊢ ( 𝜑 → ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) |
| 22 |
21
|
simprd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) |
| 23 |
6
|
opeq2i |
⊢ 〈 𝑌 , 𝑋 〉 = 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 |
| 24 |
23
|
sneqi |
⊢ { 〈 𝑌 , 𝑋 〉 } = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } |
| 25 |
22 24
|
eqtr4di |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = { 〈 𝑌 , 𝑋 〉 } ) |
| 26 |
4 9
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ) |
| 27 |
16
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( { 𝑌 } × { 𝑌 } ) ) |
| 28 |
|
xpsng |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑌 } × { 𝑌 } ) = { 〈 𝑌 , 𝑌 〉 } ) |
| 29 |
5 5 28
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑌 } × { 𝑌 } ) = { 〈 𝑌 , 𝑌 〉 } ) |
| 30 |
27 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = { 〈 𝑌 , 𝑌 〉 } ) |
| 31 |
30
|
fneq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ) ) |
| 32 |
26 31
|
mpbid |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ) |
| 33 |
|
opex |
⊢ 〈 𝑌 , 𝑌 〉 ∈ V |
| 34 |
33
|
fnsnb |
⊢ ( ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ↔ ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } ) |
| 35 |
32 34
|
sylib |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } ) |
| 36 |
|
df-ov |
⊢ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) |
| 37 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 38 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 39 |
4 37 38 9 5 5
|
funcf2 |
⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 40 |
2 4 5 5 37 8
|
termchom |
⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) = { ( 𝐼 ‘ 𝑌 ) } ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝜑 → { ( 𝐼 ‘ 𝑌 ) } = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 42 |
6 6
|
oveq12i |
⊢ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 44 |
41 43
|
feq23d |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
| 45 |
39 44
|
mpbird |
⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 46 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑌 ) ∈ V |
| 47 |
46
|
fsn2 |
⊢ ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) ) |
| 48 |
45 47
|
sylib |
⊢ ( 𝜑 → ( ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) ) |
| 49 |
48
|
simprd |
⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) |
| 50 |
4 8 7 9 5
|
funcid |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 1 ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 51 |
6
|
fveq2i |
⊢ ( 1 ‘ 𝑋 ) = ( 1 ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 52 |
50 51
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 1 ‘ 𝑋 ) ) |
| 53 |
52
|
opeq2d |
⊢ ( 𝜑 → 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 = 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 ) |
| 54 |
53
|
sneqd |
⊢ ( 𝜑 → { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 55 |
49 54
|
eqtrd |
⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 56 |
36 55
|
eqtr3id |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 57 |
56
|
opeq2d |
⊢ ( 𝜑 → 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 = 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 ) |
| 58 |
57
|
sneqd |
⊢ ( 𝜑 → { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } ) |
| 59 |
35 58
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } ) |
| 60 |
25 59
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 61 |
15 60
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 62 |
12 61
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) ) |