Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> F = { <. 2 , 6 >. , <. 3 , 9 >. } ) |
2 |
|
df-pr |
|- { <. 2 , 6 >. , <. 3 , 9 >. } = ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |
3 |
1 2
|
eqtrdi |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> F = ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) ) |
4 |
3
|
reseq1d |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = ( ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |` B ) ) |
5 |
|
resundir |
|- ( ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |` B ) = ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) |
6 |
4 5
|
eqtrdi |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) ) |
7 |
|
2re |
|- 2 e. RR |
8 |
7
|
elexi |
|- 2 e. _V |
9 |
|
6re |
|- 6 e. RR |
10 |
9
|
elexi |
|- 6 e. _V |
11 |
8 10
|
relsnop |
|- Rel { <. 2 , 6 >. } |
12 |
|
dmsnopss |
|- dom { <. 2 , 6 >. } C_ { 2 } |
13 |
|
snsspr2 |
|- { 2 } C_ { 1 , 2 } |
14 |
|
simpr |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> B = { 1 , 2 } ) |
15 |
13 14
|
sseqtrrid |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> { 2 } C_ B ) |
16 |
12 15
|
sstrid |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> dom { <. 2 , 6 >. } C_ B ) |
17 |
|
relssres |
|- ( ( Rel { <. 2 , 6 >. } /\ dom { <. 2 , 6 >. } C_ B ) -> ( { <. 2 , 6 >. } |` B ) = { <. 2 , 6 >. } ) |
18 |
11 16 17
|
sylancr |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( { <. 2 , 6 >. } |` B ) = { <. 2 , 6 >. } ) |
19 |
|
1re |
|- 1 e. RR |
20 |
|
1lt3 |
|- 1 < 3 |
21 |
19 20
|
gtneii |
|- 3 =/= 1 |
22 |
|
2lt3 |
|- 2 < 3 |
23 |
7 22
|
gtneii |
|- 3 =/= 2 |
24 |
21 23
|
nelpri |
|- -. 3 e. { 1 , 2 } |
25 |
14
|
eleq2d |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( 3 e. B <-> 3 e. { 1 , 2 } ) ) |
26 |
24 25
|
mtbiri |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> -. 3 e. B ) |
27 |
|
ressnop0 |
|- ( -. 3 e. B -> ( { <. 3 , 9 >. } |` B ) = (/) ) |
28 |
26 27
|
syl |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( { <. 3 , 9 >. } |` B ) = (/) ) |
29 |
18 28
|
uneq12d |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) = ( { <. 2 , 6 >. } u. (/) ) ) |
30 |
|
un0 |
|- ( { <. 2 , 6 >. } u. (/) ) = { <. 2 , 6 >. } |
31 |
29 30
|
eqtrdi |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) = { <. 2 , 6 >. } ) |
32 |
6 31
|
eqtrd |
|- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = { <. 2 , 6 >. } ) |