Step |
Hyp |
Ref |
Expression |
1 |
|
f1o2d2.f |
|- F = ( x e. A , y e. B |-> C ) |
2 |
|
f1o2d2.r |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. D ) |
3 |
|
f1o2d2.i |
|- ( ( ph /\ z e. D ) -> I e. A ) |
4 |
|
f1o2d2.j |
|- ( ( ph /\ z e. D ) -> J e. B ) |
5 |
|
f1o2d2.1 |
|- ( ( ph /\ ( ( x e. A /\ y e. B ) /\ z e. D ) ) -> ( ( x = I /\ y = J ) <-> z = C ) ) |
6 |
|
mpompts |
|- ( x e. A , y e. B |-> C ) = ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) |
7 |
1 6
|
eqtri |
|- F = ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) |
8 |
|
xp1st |
|- ( w e. ( A X. B ) -> ( 1st ` w ) e. A ) |
9 |
|
xp2nd |
|- ( w e. ( A X. B ) -> ( 2nd ` w ) e. B ) |
10 |
2
|
anassrs |
|- ( ( ( ph /\ x e. A ) /\ y e. B ) -> C e. D ) |
11 |
10
|
ralrimiva |
|- ( ( ph /\ x e. A ) -> A. y e. B C e. D ) |
12 |
|
rspcsbela |
|- ( ( ( 2nd ` w ) e. B /\ A. y e. B C e. D ) -> [_ ( 2nd ` w ) / y ]_ C e. D ) |
13 |
9 11 12
|
syl2anr |
|- ( ( ( ph /\ x e. A ) /\ w e. ( A X. B ) ) -> [_ ( 2nd ` w ) / y ]_ C e. D ) |
14 |
13
|
an32s |
|- ( ( ( ph /\ w e. ( A X. B ) ) /\ x e. A ) -> [_ ( 2nd ` w ) / y ]_ C e. D ) |
15 |
14
|
ralrimiva |
|- ( ( ph /\ w e. ( A X. B ) ) -> A. x e. A [_ ( 2nd ` w ) / y ]_ C e. D ) |
16 |
|
rspcsbela |
|- ( ( ( 1st ` w ) e. A /\ A. x e. A [_ ( 2nd ` w ) / y ]_ C e. D ) -> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C e. D ) |
17 |
8 15 16
|
syl2an2 |
|- ( ( ph /\ w e. ( A X. B ) ) -> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C e. D ) |
18 |
3 4
|
opelxpd |
|- ( ( ph /\ z e. D ) -> <. I , J >. e. ( A X. B ) ) |
19 |
9
|
ad2antrl |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( 2nd ` w ) e. B ) |
20 |
|
sbceq2g |
|- ( ( 2nd ` w ) e. B -> ( [. ( 2nd ` w ) / y ]. z = C <-> z = [_ ( 2nd ` w ) / y ]_ C ) ) |
21 |
19 20
|
syl |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( [. ( 2nd ` w ) / y ]. z = C <-> z = [_ ( 2nd ` w ) / y ]_ C ) ) |
22 |
21
|
sbcbidv |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. z = C <-> [. ( 1st ` w ) / x ]. z = [_ ( 2nd ` w ) / y ]_ C ) ) |
23 |
8
|
ad2antrl |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( 1st ` w ) e. A ) |
24 |
19
|
adantr |
|- ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ x = ( 1st ` w ) ) -> ( 2nd ` w ) e. B ) |
25 |
|
eqop |
|- ( w e. ( A X. B ) -> ( w = <. I , J >. <-> ( ( 1st ` w ) = I /\ ( 2nd ` w ) = J ) ) ) |
26 |
25
|
ad2antrl |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( w = <. I , J >. <-> ( ( 1st ` w ) = I /\ ( 2nd ` w ) = J ) ) ) |
27 |
|
eqeq1 |
|- ( x = ( 1st ` w ) -> ( x = I <-> ( 1st ` w ) = I ) ) |
28 |
|
eqeq1 |
|- ( y = ( 2nd ` w ) -> ( y = J <-> ( 2nd ` w ) = J ) ) |
29 |
27 28
|
bi2anan9 |
|- ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( ( x = I /\ y = J ) <-> ( ( 1st ` w ) = I /\ ( 2nd ` w ) = J ) ) ) |
30 |
29
|
bicomd |
|- ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( ( ( 1st ` w ) = I /\ ( 2nd ` w ) = J ) <-> ( x = I /\ y = J ) ) ) |
31 |
26 30
|
sylan9bb |
|- ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( w = <. I , J >. <-> ( x = I /\ y = J ) ) ) |
32 |
31
|
anassrs |
|- ( ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ x = ( 1st ` w ) ) /\ y = ( 2nd ` w ) ) -> ( w = <. I , J >. <-> ( x = I /\ y = J ) ) ) |
33 |
|
eleq1 |
|- ( x = ( 1st ` w ) -> ( x e. A <-> ( 1st ` w ) e. A ) ) |
34 |
8 33
|
syl5ibrcom |
|- ( w e. ( A X. B ) -> ( x = ( 1st ` w ) -> x e. A ) ) |
35 |
34
|
imp |
|- ( ( w e. ( A X. B ) /\ x = ( 1st ` w ) ) -> x e. A ) |
36 |
|
eleq1 |
|- ( y = ( 2nd ` w ) -> ( y e. B <-> ( 2nd ` w ) e. B ) ) |
37 |
9 36
|
syl5ibrcom |
|- ( w e. ( A X. B ) -> ( y = ( 2nd ` w ) -> y e. B ) ) |
38 |
37
|
imp |
|- ( ( w e. ( A X. B ) /\ y = ( 2nd ` w ) ) -> y e. B ) |
39 |
35 38
|
anim12dan |
|- ( ( w e. ( A X. B ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( x e. A /\ y e. B ) ) |
40 |
39
|
3impb |
|- ( ( w e. ( A X. B ) /\ x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( x e. A /\ y e. B ) ) |
41 |
40
|
3adant1r |
|- ( ( ( w e. ( A X. B ) /\ z e. D ) /\ x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( x e. A /\ y e. B ) ) |
42 |
|
simp1r |
|- ( ( ( w e. ( A X. B ) /\ z e. D ) /\ x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> z e. D ) |
43 |
41 42
|
jca |
|- ( ( ( w e. ( A X. B ) /\ z e. D ) /\ x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( ( x e. A /\ y e. B ) /\ z e. D ) ) |
44 |
43 5
|
sylan2 |
|- ( ( ph /\ ( ( w e. ( A X. B ) /\ z e. D ) /\ x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( ( x = I /\ y = J ) <-> z = C ) ) |
45 |
44
|
3anassrs |
|- ( ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ x = ( 1st ` w ) ) /\ y = ( 2nd ` w ) ) -> ( ( x = I /\ y = J ) <-> z = C ) ) |
46 |
32 45
|
bitr2d |
|- ( ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ x = ( 1st ` w ) ) /\ y = ( 2nd ` w ) ) -> ( z = C <-> w = <. I , J >. ) ) |
47 |
24 46
|
sbcied |
|- ( ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) /\ x = ( 1st ` w ) ) -> ( [. ( 2nd ` w ) / y ]. z = C <-> w = <. I , J >. ) ) |
48 |
23 47
|
sbcied |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. z = C <-> w = <. I , J >. ) ) |
49 |
|
sbceq2g |
|- ( ( 1st ` w ) e. A -> ( [. ( 1st ` w ) / x ]. z = [_ ( 2nd ` w ) / y ]_ C <-> z = [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) ) |
50 |
23 49
|
syl |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( [. ( 1st ` w ) / x ]. z = [_ ( 2nd ` w ) / y ]_ C <-> z = [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) ) |
51 |
22 48 50
|
3bitr3d |
|- ( ( ph /\ ( w e. ( A X. B ) /\ z e. D ) ) -> ( w = <. I , J >. <-> z = [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) ) |
52 |
7 17 18 51
|
f1o2d |
|- ( ph -> F : ( A X. B ) -1-1-onto-> D ) |