Step |
Hyp |
Ref |
Expression |
1 |
|
1rp |
|- 1 e. RR+ |
2 |
1
|
a1i |
|- ( ( M e. NN0 /\ B e. NN ) -> 1 e. RR+ ) |
3 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
4 |
3
|
rpreccld |
|- ( B e. NN -> ( 1 / B ) e. RR+ ) |
5 |
4
|
adantl |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 / B ) e. RR+ ) |
6 |
2 5
|
rpaddcld |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( 1 / B ) ) e. RR+ ) |
7 |
6
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( 1 / B ) ) e. CC ) |
8 |
|
simpl |
|- ( ( M e. NN0 /\ B e. NN ) -> M e. NN0 ) |
9 |
7 8
|
expp1d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) = ( ( ( 1 + ( 1 / B ) ) ^ M ) x. ( 1 + ( 1 / B ) ) ) ) |
10 |
1
|
a1i |
|- ( B e. NN -> 1 e. RR+ ) |
11 |
10 4
|
rpaddcld |
|- ( B e. NN -> ( 1 + ( 1 / B ) ) e. RR+ ) |
12 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
13 |
|
rpexpcl |
|- ( ( ( 1 + ( 1 / B ) ) e. RR+ /\ M e. ZZ ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. RR+ ) |
14 |
11 12 13
|
syl2anr |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. RR+ ) |
15 |
14
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. CC ) |
16 |
|
1cnd |
|- ( ( M e. NN0 /\ B e. NN ) -> 1 e. CC ) |
17 |
|
nn0nndivcl |
|- ( ( M e. NN0 /\ B e. NN ) -> ( M / B ) e. RR ) |
18 |
17
|
recnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( M / B ) e. CC ) |
19 |
16 18
|
addcomd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) = ( ( M / B ) + 1 ) ) |
20 |
|
nn0ge0div |
|- ( ( M e. NN0 /\ B e. NN ) -> 0 <_ ( M / B ) ) |
21 |
17 20
|
ge0p1rpd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( M / B ) + 1 ) e. RR+ ) |
22 |
19 21
|
eqeltrd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) e. RR+ ) |
23 |
22
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) e. CC ) |
24 |
22
|
rpne0d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) =/= 0 ) |
25 |
15 23 24
|
divcan1d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) = ( ( 1 + ( 1 / B ) ) ^ M ) ) |
26 |
25
|
oveq1d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) x. ( 1 + ( 1 / B ) ) ) = ( ( ( 1 + ( 1 / B ) ) ^ M ) x. ( 1 + ( 1 / B ) ) ) ) |
27 |
14 22
|
rpdivcld |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) e. RR+ ) |
28 |
27
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) e. CC ) |
29 |
28 23 7
|
mulassd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) x. ( 1 + ( 1 / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) ) |
30 |
9 26 29
|
3eqtr2d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) ) |
31 |
30
|
oveq1d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) |
32 |
22 6
|
rpmulcld |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) e. RR+ ) |
33 |
32
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) e. CC ) |
34 |
|
nn0p1nn |
|- ( M e. NN0 -> ( M + 1 ) e. NN ) |
35 |
34
|
nnrpd |
|- ( M e. NN0 -> ( M + 1 ) e. RR+ ) |
36 |
35
|
adantr |
|- ( ( M e. NN0 /\ B e. NN ) -> ( M + 1 ) e. RR+ ) |
37 |
3
|
adantl |
|- ( ( M e. NN0 /\ B e. NN ) -> B e. RR+ ) |
38 |
36 37
|
rpdivcld |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( M + 1 ) / B ) e. RR+ ) |
39 |
2 38
|
rpaddcld |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) e. RR+ ) |
40 |
39
|
rpcnd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) e. CC ) |
41 |
39
|
rpne0d |
|- ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) =/= 0 ) |
42 |
28 33 40 41
|
divassd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) ) |
43 |
31 42
|
eqtrd |
|- ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) ) |