| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1rp |  |-  1 e. RR+ | 
						
							| 2 | 1 | a1i |  |-  ( ( M e. NN0 /\ B e. NN ) -> 1 e. RR+ ) | 
						
							| 3 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 4 | 3 | rpreccld |  |-  ( B e. NN -> ( 1 / B ) e. RR+ ) | 
						
							| 5 | 4 | adantl |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 / B ) e. RR+ ) | 
						
							| 6 | 2 5 | rpaddcld |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( 1 / B ) ) e. RR+ ) | 
						
							| 7 | 6 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( 1 / B ) ) e. CC ) | 
						
							| 8 |  | simpl |  |-  ( ( M e. NN0 /\ B e. NN ) -> M e. NN0 ) | 
						
							| 9 | 7 8 | expp1d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) = ( ( ( 1 + ( 1 / B ) ) ^ M ) x. ( 1 + ( 1 / B ) ) ) ) | 
						
							| 10 | 1 | a1i |  |-  ( B e. NN -> 1 e. RR+ ) | 
						
							| 11 | 10 4 | rpaddcld |  |-  ( B e. NN -> ( 1 + ( 1 / B ) ) e. RR+ ) | 
						
							| 12 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 13 |  | rpexpcl |  |-  ( ( ( 1 + ( 1 / B ) ) e. RR+ /\ M e. ZZ ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. RR+ ) | 
						
							| 14 | 11 12 13 | syl2anr |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. RR+ ) | 
						
							| 15 | 14 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ M ) e. CC ) | 
						
							| 16 |  | 1cnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> 1 e. CC ) | 
						
							| 17 |  | nn0nndivcl |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( M / B ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( M / B ) e. CC ) | 
						
							| 19 | 16 18 | addcomd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) = ( ( M / B ) + 1 ) ) | 
						
							| 20 |  | nn0ge0div |  |-  ( ( M e. NN0 /\ B e. NN ) -> 0 <_ ( M / B ) ) | 
						
							| 21 | 17 20 | ge0p1rpd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( M / B ) + 1 ) e. RR+ ) | 
						
							| 22 | 19 21 | eqeltrd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) e. RR+ ) | 
						
							| 23 | 22 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) e. CC ) | 
						
							| 24 | 22 | rpne0d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( M / B ) ) =/= 0 ) | 
						
							| 25 | 15 23 24 | divcan1d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) = ( ( 1 + ( 1 / B ) ) ^ M ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) x. ( 1 + ( 1 / B ) ) ) = ( ( ( 1 + ( 1 / B ) ) ^ M ) x. ( 1 + ( 1 / B ) ) ) ) | 
						
							| 27 | 14 22 | rpdivcld |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) e. RR+ ) | 
						
							| 28 | 27 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) e. CC ) | 
						
							| 29 | 28 23 7 | mulassd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( 1 + ( M / B ) ) ) x. ( 1 + ( 1 / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) ) | 
						
							| 30 | 9 26 29 | 3eqtr2d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) | 
						
							| 32 | 22 6 | rpmulcld |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) e. RR+ ) | 
						
							| 33 | 32 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) e. CC ) | 
						
							| 34 |  | nn0p1nn |  |-  ( M e. NN0 -> ( M + 1 ) e. NN ) | 
						
							| 35 | 34 | nnrpd |  |-  ( M e. NN0 -> ( M + 1 ) e. RR+ ) | 
						
							| 36 | 35 | adantr |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( M + 1 ) e. RR+ ) | 
						
							| 37 | 3 | adantl |  |-  ( ( M e. NN0 /\ B e. NN ) -> B e. RR+ ) | 
						
							| 38 | 36 37 | rpdivcld |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( M + 1 ) / B ) e. RR+ ) | 
						
							| 39 | 2 38 | rpaddcld |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) e. RR+ ) | 
						
							| 40 | 39 | rpcnd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) e. CC ) | 
						
							| 41 | 39 | rpne0d |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( 1 + ( ( M + 1 ) / B ) ) =/= 0 ) | 
						
							| 42 | 28 33 40 41 | divassd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) ) | 
						
							| 43 | 31 42 | eqtrd |  |-  ( ( M e. NN0 /\ B e. NN ) -> ( ( ( 1 + ( 1 / B ) ) ^ ( M + 1 ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) = ( ( ( ( 1 + ( 1 / B ) ) ^ M ) / ( 1 + ( M / B ) ) ) x. ( ( ( 1 + ( M / B ) ) x. ( 1 + ( 1 / B ) ) ) / ( 1 + ( ( M + 1 ) / B ) ) ) ) ) |