| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclim.1 |  |-  F = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) | 
						
							| 2 |  | seqeq3 |  |-  ( F = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) -> seq 1 ( x. , F ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  seq 1 ( x. , F ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( a = 0 -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ 0 ) ) | 
						
							| 5 |  | oveq1 |  |-  ( a = 0 -> ( a / n ) = ( 0 / n ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( a = 0 -> ( 1 + ( a / n ) ) = ( 1 + ( 0 / n ) ) ) | 
						
							| 7 | 4 6 | oveq12d |  |-  ( a = 0 -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) | 
						
							| 8 | 7 | mpteq2dv |  |-  ( a = 0 -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) | 
						
							| 9 | 8 | seqeq3d |  |-  ( a = 0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( a = 0 -> ( ! ` a ) = ( ! ` 0 ) ) | 
						
							| 11 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( a = 0 -> ( ! ` a ) = 1 ) | 
						
							| 13 | 9 12 | breq12d |  |-  ( a = 0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ~~> 1 ) ) | 
						
							| 14 |  | oveq2 |  |-  ( a = m -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ m ) ) | 
						
							| 15 |  | oveq1 |  |-  ( a = m -> ( a / n ) = ( m / n ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( a = m -> ( 1 + ( a / n ) ) = ( 1 + ( m / n ) ) ) | 
						
							| 17 | 14 16 | oveq12d |  |-  ( a = m -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) | 
						
							| 18 | 17 | mpteq2dv |  |-  ( a = m -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) | 
						
							| 19 | 18 | seqeq3d |  |-  ( a = m -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( a = m -> ( ! ` a ) = ( ! ` m ) ) | 
						
							| 21 | 19 20 | breq12d |  |-  ( a = m -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) ) | 
						
							| 22 |  | oveq2 |  |-  ( a = ( m + 1 ) -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) ) | 
						
							| 23 |  | oveq1 |  |-  ( a = ( m + 1 ) -> ( a / n ) = ( ( m + 1 ) / n ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( a = ( m + 1 ) -> ( 1 + ( a / n ) ) = ( 1 + ( ( m + 1 ) / n ) ) ) | 
						
							| 25 | 22 24 | oveq12d |  |-  ( a = ( m + 1 ) -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) | 
						
							| 26 | 25 | mpteq2dv |  |-  ( a = ( m + 1 ) -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) | 
						
							| 27 | 26 | seqeq3d |  |-  ( a = ( m + 1 ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ) | 
						
							| 28 |  | fveq2 |  |-  ( a = ( m + 1 ) -> ( ! ` a ) = ( ! ` ( m + 1 ) ) ) | 
						
							| 29 | 27 28 | breq12d |  |-  ( a = ( m + 1 ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( a = A -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ A ) ) | 
						
							| 31 |  | oveq1 |  |-  ( a = A -> ( a / n ) = ( A / n ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( a = A -> ( 1 + ( a / n ) ) = ( 1 + ( A / n ) ) ) | 
						
							| 33 | 30 32 | oveq12d |  |-  ( a = A -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) | 
						
							| 34 | 33 | mpteq2dv |  |-  ( a = A -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) | 
						
							| 35 | 34 | seqeq3d |  |-  ( a = A -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ) | 
						
							| 36 |  | fveq2 |  |-  ( a = A -> ( ! ` a ) = ( ! ` A ) ) | 
						
							| 37 | 35 36 | breq12d |  |-  ( a = A -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ~~> ( ! ` A ) ) ) | 
						
							| 38 |  | 1red |  |-  ( n e. NN -> 1 e. RR ) | 
						
							| 39 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 40 | 38 39 | readdcld |  |-  ( n e. NN -> ( 1 + ( 1 / n ) ) e. RR ) | 
						
							| 41 | 40 | recnd |  |-  ( n e. NN -> ( 1 + ( 1 / n ) ) e. CC ) | 
						
							| 42 | 41 | exp0d |  |-  ( n e. NN -> ( ( 1 + ( 1 / n ) ) ^ 0 ) = 1 ) | 
						
							| 43 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 44 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 45 | 43 44 | div0d |  |-  ( n e. NN -> ( 0 / n ) = 0 ) | 
						
							| 46 | 45 | oveq2d |  |-  ( n e. NN -> ( 1 + ( 0 / n ) ) = ( 1 + 0 ) ) | 
						
							| 47 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 48 | 46 47 | eqtrdi |  |-  ( n e. NN -> ( 1 + ( 0 / n ) ) = 1 ) | 
						
							| 49 | 42 48 | oveq12d |  |-  ( n e. NN -> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) = ( 1 / 1 ) ) | 
						
							| 50 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 51 | 49 50 | eqtrdi |  |-  ( n e. NN -> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) = 1 ) | 
						
							| 52 | 51 | mpteq2ia |  |-  ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( n e. NN |-> 1 ) | 
						
							| 53 |  | fconstmpt |  |-  ( NN X. { 1 } ) = ( n e. NN |-> 1 ) | 
						
							| 54 | 52 53 | eqtr4i |  |-  ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( NN X. { 1 } ) | 
						
							| 55 |  | seqeq3 |  |-  ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( NN X. { 1 } ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) = seq 1 ( x. , ( NN X. { 1 } ) ) ) | 
						
							| 56 | 54 55 | ax-mp |  |-  seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) = seq 1 ( x. , ( NN X. { 1 } ) ) | 
						
							| 57 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 58 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 59 | 57 58 | climprod1 |  |-  ( T. -> seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 ) | 
						
							| 60 | 59 | mptru |  |-  seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 | 
						
							| 61 | 56 60 | eqbrtri |  |-  seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ~~> 1 | 
						
							| 62 |  | 1zzd |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> 1 e. ZZ ) | 
						
							| 63 |  | simpr |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) | 
						
							| 64 |  | seqex |  |-  seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) e. _V | 
						
							| 65 | 64 | a1i |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) e. _V ) | 
						
							| 66 |  | faclimlem2 |  |-  ( m e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( m + 1 ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( m + 1 ) ) | 
						
							| 68 |  | elnnuz |  |-  ( a e. NN <-> a e. ( ZZ>= ` 1 ) ) | 
						
							| 69 | 68 | biimpi |  |-  ( a e. NN -> a e. ( ZZ>= ` 1 ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( m e. NN0 /\ a e. NN ) -> a e. ( ZZ>= ` 1 ) ) | 
						
							| 71 |  | 1rp |  |-  1 e. RR+ | 
						
							| 72 | 71 | a1i |  |-  ( ( m e. NN0 /\ n e. NN ) -> 1 e. RR+ ) | 
						
							| 73 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 74 | 73 | rpreccld |  |-  ( n e. NN -> ( 1 / n ) e. RR+ ) | 
						
							| 75 | 74 | adantl |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( 1 / n ) e. RR+ ) | 
						
							| 76 | 72 75 | rpaddcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( 1 / n ) ) e. RR+ ) | 
						
							| 77 |  | nn0z |  |-  ( m e. NN0 -> m e. ZZ ) | 
						
							| 78 | 77 | adantr |  |-  ( ( m e. NN0 /\ n e. NN ) -> m e. ZZ ) | 
						
							| 79 | 76 78 | rpexpcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( 1 + ( 1 / n ) ) ^ m ) e. RR+ ) | 
						
							| 80 |  | 1cnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> 1 e. CC ) | 
						
							| 81 |  | nn0nndivcl |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( m / n ) e. RR ) | 
						
							| 82 | 81 | recnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( m / n ) e. CC ) | 
						
							| 83 | 80 82 | addcomd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( m / n ) ) = ( ( m / n ) + 1 ) ) | 
						
							| 84 |  | nn0ge0div |  |-  ( ( m e. NN0 /\ n e. NN ) -> 0 <_ ( m / n ) ) | 
						
							| 85 | 81 84 | ge0p1rpd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( m / n ) + 1 ) e. RR+ ) | 
						
							| 86 | 83 85 | eqeltrd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( m / n ) ) e. RR+ ) | 
						
							| 87 | 79 86 | rpdivcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) e. RR+ ) | 
						
							| 88 | 87 | rpcnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) e. CC ) | 
						
							| 89 | 88 | fmpttd |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) : NN --> CC ) | 
						
							| 90 |  | elfznn |  |-  ( b e. ( 1 ... a ) -> b e. NN ) | 
						
							| 91 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) : NN --> CC /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) | 
						
							| 92 | 89 90 91 | syl2an |  |-  ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) | 
						
							| 93 | 92 | adantlr |  |-  ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) | 
						
							| 94 |  | mulcl |  |-  ( ( b e. CC /\ x e. CC ) -> ( b x. x ) e. CC ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ( m e. NN0 /\ a e. NN ) /\ ( b e. CC /\ x e. CC ) ) -> ( b x. x ) e. CC ) | 
						
							| 96 | 70 93 95 | seqcl |  |-  ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) e. CC ) | 
						
							| 97 | 96 | adantlr |  |-  ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) e. CC ) | 
						
							| 98 | 86 76 | rpmulcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) e. RR+ ) | 
						
							| 99 |  | nn0p1nn |  |-  ( m e. NN0 -> ( m + 1 ) e. NN ) | 
						
							| 100 | 99 | nnrpd |  |-  ( m e. NN0 -> ( m + 1 ) e. RR+ ) | 
						
							| 101 |  | rpdivcl |  |-  ( ( ( m + 1 ) e. RR+ /\ n e. RR+ ) -> ( ( m + 1 ) / n ) e. RR+ ) | 
						
							| 102 | 100 73 101 | syl2an |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( m + 1 ) / n ) e. RR+ ) | 
						
							| 103 | 72 102 | rpaddcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( ( m + 1 ) / n ) ) e. RR+ ) | 
						
							| 104 | 98 103 | rpdivcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) e. RR+ ) | 
						
							| 105 | 104 | rpcnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) e. CC ) | 
						
							| 106 | 105 | fmpttd |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) : NN --> CC ) | 
						
							| 107 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) : NN --> CC /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) | 
						
							| 108 | 106 90 107 | syl2an |  |-  ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) | 
						
							| 109 | 108 | adantlr |  |-  ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) | 
						
							| 110 | 70 109 95 | seqcl |  |-  ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) e. CC ) | 
						
							| 111 | 110 | adantlr |  |-  ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) e. CC ) | 
						
							| 112 |  | faclimlem3 |  |-  ( ( m e. NN0 /\ b e. NN ) -> ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) | 
						
							| 113 |  | oveq2 |  |-  ( n = b -> ( 1 / n ) = ( 1 / b ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( n = b -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / b ) ) ) | 
						
							| 115 | 114 | oveq1d |  |-  ( n = b -> ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) = ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) ) | 
						
							| 116 |  | oveq2 |  |-  ( n = b -> ( ( m + 1 ) / n ) = ( ( m + 1 ) / b ) ) | 
						
							| 117 | 116 | oveq2d |  |-  ( n = b -> ( 1 + ( ( m + 1 ) / n ) ) = ( 1 + ( ( m + 1 ) / b ) ) ) | 
						
							| 118 | 115 117 | oveq12d |  |-  ( n = b -> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) | 
						
							| 119 |  | eqid |  |-  ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) | 
						
							| 120 |  | ovex |  |-  ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) e. _V | 
						
							| 121 | 118 119 120 | fvmpt |  |-  ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) | 
						
							| 122 | 121 | adantl |  |-  ( ( m e. NN0 /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) | 
						
							| 123 | 114 | oveq1d |  |-  ( n = b -> ( ( 1 + ( 1 / n ) ) ^ m ) = ( ( 1 + ( 1 / b ) ) ^ m ) ) | 
						
							| 124 |  | oveq2 |  |-  ( n = b -> ( m / n ) = ( m / b ) ) | 
						
							| 125 | 124 | oveq2d |  |-  ( n = b -> ( 1 + ( m / n ) ) = ( 1 + ( m / b ) ) ) | 
						
							| 126 | 123 125 | oveq12d |  |-  ( n = b -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) = ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) ) | 
						
							| 127 |  | eqid |  |-  ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) | 
						
							| 128 |  | ovex |  |-  ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) e. _V | 
						
							| 129 | 126 127 128 | fvmpt |  |-  ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) ) | 
						
							| 130 | 125 114 | oveq12d |  |-  ( n = b -> ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) = ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) ) | 
						
							| 131 | 130 117 | oveq12d |  |-  ( n = b -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) = ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) | 
						
							| 132 |  | eqid |  |-  ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) | 
						
							| 133 |  | ovex |  |-  ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) e. _V | 
						
							| 134 | 131 132 133 | fvmpt |  |-  ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) | 
						
							| 135 | 129 134 | oveq12d |  |-  ( b e. NN -> ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) | 
						
							| 136 | 135 | adantl |  |-  ( ( m e. NN0 /\ b e. NN ) -> ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) | 
						
							| 137 | 112 122 136 | 3eqtr4d |  |-  ( ( m e. NN0 /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) | 
						
							| 138 | 90 137 | sylan2 |  |-  ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) | 
						
							| 139 | 138 | adantlr |  |-  ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) | 
						
							| 140 | 70 93 109 139 | prodfmul |  |-  ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) x. ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) ) ) | 
						
							| 141 | 140 | adantlr |  |-  ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) x. ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) ) ) | 
						
							| 142 | 57 62 63 65 67 97 111 141 | climmul |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ( ! ` m ) x. ( m + 1 ) ) ) | 
						
							| 143 |  | facp1 |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) | 
						
							| 144 | 143 | adantr |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) | 
						
							| 145 | 142 144 | breqtrrd |  |-  ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) | 
						
							| 146 | 145 | ex |  |-  ( m e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) ) | 
						
							| 147 | 13 21 29 37 61 146 | nn0ind |  |-  ( A e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ~~> ( ! ` A ) ) | 
						
							| 148 | 3 147 | eqbrtrid |  |-  ( A e. NN0 -> seq 1 ( x. , F ) ~~> ( ! ` A ) ) |