| Step |
Hyp |
Ref |
Expression |
| 1 |
|
faclim.1 |
|- F = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) |
| 2 |
|
seqeq3 |
|- ( F = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) -> seq 1 ( x. , F ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ) |
| 3 |
1 2
|
ax-mp |
|- seq 1 ( x. , F ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) |
| 4 |
|
oveq2 |
|- ( a = 0 -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ 0 ) ) |
| 5 |
|
oveq1 |
|- ( a = 0 -> ( a / n ) = ( 0 / n ) ) |
| 6 |
5
|
oveq2d |
|- ( a = 0 -> ( 1 + ( a / n ) ) = ( 1 + ( 0 / n ) ) ) |
| 7 |
4 6
|
oveq12d |
|- ( a = 0 -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) |
| 8 |
7
|
mpteq2dv |
|- ( a = 0 -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) |
| 9 |
8
|
seqeq3d |
|- ( a = 0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ) |
| 10 |
|
fveq2 |
|- ( a = 0 -> ( ! ` a ) = ( ! ` 0 ) ) |
| 11 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 12 |
10 11
|
eqtrdi |
|- ( a = 0 -> ( ! ` a ) = 1 ) |
| 13 |
9 12
|
breq12d |
|- ( a = 0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ~~> 1 ) ) |
| 14 |
|
oveq2 |
|- ( a = m -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ m ) ) |
| 15 |
|
oveq1 |
|- ( a = m -> ( a / n ) = ( m / n ) ) |
| 16 |
15
|
oveq2d |
|- ( a = m -> ( 1 + ( a / n ) ) = ( 1 + ( m / n ) ) ) |
| 17 |
14 16
|
oveq12d |
|- ( a = m -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) |
| 18 |
17
|
mpteq2dv |
|- ( a = m -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) |
| 19 |
18
|
seqeq3d |
|- ( a = m -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ) |
| 20 |
|
fveq2 |
|- ( a = m -> ( ! ` a ) = ( ! ` m ) ) |
| 21 |
19 20
|
breq12d |
|- ( a = m -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) ) |
| 22 |
|
oveq2 |
|- ( a = ( m + 1 ) -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) ) |
| 23 |
|
oveq1 |
|- ( a = ( m + 1 ) -> ( a / n ) = ( ( m + 1 ) / n ) ) |
| 24 |
23
|
oveq2d |
|- ( a = ( m + 1 ) -> ( 1 + ( a / n ) ) = ( 1 + ( ( m + 1 ) / n ) ) ) |
| 25 |
22 24
|
oveq12d |
|- ( a = ( m + 1 ) -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) |
| 26 |
25
|
mpteq2dv |
|- ( a = ( m + 1 ) -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) |
| 27 |
26
|
seqeq3d |
|- ( a = ( m + 1 ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ) |
| 28 |
|
fveq2 |
|- ( a = ( m + 1 ) -> ( ! ` a ) = ( ! ` ( m + 1 ) ) ) |
| 29 |
27 28
|
breq12d |
|- ( a = ( m + 1 ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) ) |
| 30 |
|
oveq2 |
|- ( a = A -> ( ( 1 + ( 1 / n ) ) ^ a ) = ( ( 1 + ( 1 / n ) ) ^ A ) ) |
| 31 |
|
oveq1 |
|- ( a = A -> ( a / n ) = ( A / n ) ) |
| 32 |
31
|
oveq2d |
|- ( a = A -> ( 1 + ( a / n ) ) = ( 1 + ( A / n ) ) ) |
| 33 |
30 32
|
oveq12d |
|- ( a = A -> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) = ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) |
| 34 |
33
|
mpteq2dv |
|- ( a = A -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) |
| 35 |
34
|
seqeq3d |
|- ( a = A -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) = seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ) |
| 36 |
|
fveq2 |
|- ( a = A -> ( ! ` a ) = ( ! ` A ) ) |
| 37 |
35 36
|
breq12d |
|- ( a = A -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ a ) / ( 1 + ( a / n ) ) ) ) ) ~~> ( ! ` a ) <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ~~> ( ! ` A ) ) ) |
| 38 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 39 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 40 |
38 39
|
readdcld |
|- ( n e. NN -> ( 1 + ( 1 / n ) ) e. RR ) |
| 41 |
40
|
recnd |
|- ( n e. NN -> ( 1 + ( 1 / n ) ) e. CC ) |
| 42 |
41
|
exp0d |
|- ( n e. NN -> ( ( 1 + ( 1 / n ) ) ^ 0 ) = 1 ) |
| 43 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 44 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 45 |
43 44
|
div0d |
|- ( n e. NN -> ( 0 / n ) = 0 ) |
| 46 |
45
|
oveq2d |
|- ( n e. NN -> ( 1 + ( 0 / n ) ) = ( 1 + 0 ) ) |
| 47 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 48 |
46 47
|
eqtrdi |
|- ( n e. NN -> ( 1 + ( 0 / n ) ) = 1 ) |
| 49 |
42 48
|
oveq12d |
|- ( n e. NN -> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) = ( 1 / 1 ) ) |
| 50 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 51 |
49 50
|
eqtrdi |
|- ( n e. NN -> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) = 1 ) |
| 52 |
51
|
mpteq2ia |
|- ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( n e. NN |-> 1 ) |
| 53 |
|
fconstmpt |
|- ( NN X. { 1 } ) = ( n e. NN |-> 1 ) |
| 54 |
52 53
|
eqtr4i |
|- ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( NN X. { 1 } ) |
| 55 |
|
seqeq3 |
|- ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) = ( NN X. { 1 } ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) = seq 1 ( x. , ( NN X. { 1 } ) ) ) |
| 56 |
54 55
|
ax-mp |
|- seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) = seq 1 ( x. , ( NN X. { 1 } ) ) |
| 57 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 58 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 59 |
57 58
|
climprod1 |
|- ( T. -> seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 ) |
| 60 |
59
|
mptru |
|- seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 |
| 61 |
56 60
|
eqbrtri |
|- seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ 0 ) / ( 1 + ( 0 / n ) ) ) ) ) ~~> 1 |
| 62 |
|
1zzd |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> 1 e. ZZ ) |
| 63 |
|
simpr |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) |
| 64 |
|
seqex |
|- seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) e. _V |
| 65 |
64
|
a1i |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) e. _V ) |
| 66 |
|
faclimlem2 |
|- ( m e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( m + 1 ) ) |
| 67 |
66
|
adantr |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( m + 1 ) ) |
| 68 |
|
elnnuz |
|- ( a e. NN <-> a e. ( ZZ>= ` 1 ) ) |
| 69 |
68
|
biimpi |
|- ( a e. NN -> a e. ( ZZ>= ` 1 ) ) |
| 70 |
69
|
adantl |
|- ( ( m e. NN0 /\ a e. NN ) -> a e. ( ZZ>= ` 1 ) ) |
| 71 |
|
1rp |
|- 1 e. RR+ |
| 72 |
71
|
a1i |
|- ( ( m e. NN0 /\ n e. NN ) -> 1 e. RR+ ) |
| 73 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 74 |
73
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
| 75 |
74
|
adantl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( 1 / n ) e. RR+ ) |
| 76 |
72 75
|
rpaddcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( 1 / n ) ) e. RR+ ) |
| 77 |
|
nn0z |
|- ( m e. NN0 -> m e. ZZ ) |
| 78 |
77
|
adantr |
|- ( ( m e. NN0 /\ n e. NN ) -> m e. ZZ ) |
| 79 |
76 78
|
rpexpcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( 1 + ( 1 / n ) ) ^ m ) e. RR+ ) |
| 80 |
|
1cnd |
|- ( ( m e. NN0 /\ n e. NN ) -> 1 e. CC ) |
| 81 |
|
nn0nndivcl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( m / n ) e. RR ) |
| 82 |
81
|
recnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( m / n ) e. CC ) |
| 83 |
80 82
|
addcomd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( m / n ) ) = ( ( m / n ) + 1 ) ) |
| 84 |
|
nn0ge0div |
|- ( ( m e. NN0 /\ n e. NN ) -> 0 <_ ( m / n ) ) |
| 85 |
81 84
|
ge0p1rpd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( m / n ) + 1 ) e. RR+ ) |
| 86 |
83 85
|
eqeltrd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( m / n ) ) e. RR+ ) |
| 87 |
79 86
|
rpdivcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) e. RR+ ) |
| 88 |
87
|
rpcnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) e. CC ) |
| 89 |
88
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) : NN --> CC ) |
| 90 |
|
elfznn |
|- ( b e. ( 1 ... a ) -> b e. NN ) |
| 91 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) : NN --> CC /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) |
| 92 |
89 90 91
|
syl2an |
|- ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) |
| 93 |
92
|
adantlr |
|- ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) e. CC ) |
| 94 |
|
mulcl |
|- ( ( b e. CC /\ x e. CC ) -> ( b x. x ) e. CC ) |
| 95 |
94
|
adantl |
|- ( ( ( m e. NN0 /\ a e. NN ) /\ ( b e. CC /\ x e. CC ) ) -> ( b x. x ) e. CC ) |
| 96 |
70 93 95
|
seqcl |
|- ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) e. CC ) |
| 97 |
96
|
adantlr |
|- ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) e. CC ) |
| 98 |
86 76
|
rpmulcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) e. RR+ ) |
| 99 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
| 100 |
99
|
nnrpd |
|- ( m e. NN0 -> ( m + 1 ) e. RR+ ) |
| 101 |
|
rpdivcl |
|- ( ( ( m + 1 ) e. RR+ /\ n e. RR+ ) -> ( ( m + 1 ) / n ) e. RR+ ) |
| 102 |
100 73 101
|
syl2an |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( m + 1 ) / n ) e. RR+ ) |
| 103 |
72 102
|
rpaddcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( 1 + ( ( m + 1 ) / n ) ) e. RR+ ) |
| 104 |
98 103
|
rpdivcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) e. RR+ ) |
| 105 |
104
|
rpcnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) e. CC ) |
| 106 |
105
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) : NN --> CC ) |
| 107 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) : NN --> CC /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) |
| 108 |
106 90 107
|
syl2an |
|- ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) |
| 109 |
108
|
adantlr |
|- ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) e. CC ) |
| 110 |
70 109 95
|
seqcl |
|- ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) e. CC ) |
| 111 |
110
|
adantlr |
|- ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) e. CC ) |
| 112 |
|
faclimlem3 |
|- ( ( m e. NN0 /\ b e. NN ) -> ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) |
| 113 |
|
oveq2 |
|- ( n = b -> ( 1 / n ) = ( 1 / b ) ) |
| 114 |
113
|
oveq2d |
|- ( n = b -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / b ) ) ) |
| 115 |
114
|
oveq1d |
|- ( n = b -> ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) = ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) ) |
| 116 |
|
oveq2 |
|- ( n = b -> ( ( m + 1 ) / n ) = ( ( m + 1 ) / b ) ) |
| 117 |
116
|
oveq2d |
|- ( n = b -> ( 1 + ( ( m + 1 ) / n ) ) = ( 1 + ( ( m + 1 ) / b ) ) ) |
| 118 |
115 117
|
oveq12d |
|- ( n = b -> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) |
| 119 |
|
eqid |
|- ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) |
| 120 |
|
ovex |
|- ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) e. _V |
| 121 |
118 119 120
|
fvmpt |
|- ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) |
| 122 |
121
|
adantl |
|- ( ( m e. NN0 /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) |
| 123 |
114
|
oveq1d |
|- ( n = b -> ( ( 1 + ( 1 / n ) ) ^ m ) = ( ( 1 + ( 1 / b ) ) ^ m ) ) |
| 124 |
|
oveq2 |
|- ( n = b -> ( m / n ) = ( m / b ) ) |
| 125 |
124
|
oveq2d |
|- ( n = b -> ( 1 + ( m / n ) ) = ( 1 + ( m / b ) ) ) |
| 126 |
123 125
|
oveq12d |
|- ( n = b -> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) = ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) ) |
| 127 |
|
eqid |
|- ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) |
| 128 |
|
ovex |
|- ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) e. _V |
| 129 |
126 127 128
|
fvmpt |
|- ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) = ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) ) |
| 130 |
125 114
|
oveq12d |
|- ( n = b -> ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) = ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) ) |
| 131 |
130 117
|
oveq12d |
|- ( n = b -> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) = ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) |
| 132 |
|
eqid |
|- ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) |
| 133 |
|
ovex |
|- ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) e. _V |
| 134 |
131 132 133
|
fvmpt |
|- ( b e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) |
| 135 |
129 134
|
oveq12d |
|- ( b e. NN -> ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) |
| 136 |
135
|
adantl |
|- ( ( m e. NN0 /\ b e. NN ) -> ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) = ( ( ( ( 1 + ( 1 / b ) ) ^ m ) / ( 1 + ( m / b ) ) ) x. ( ( ( 1 + ( m / b ) ) x. ( 1 + ( 1 / b ) ) ) / ( 1 + ( ( m + 1 ) / b ) ) ) ) ) |
| 137 |
112 122 136
|
3eqtr4d |
|- ( ( m e. NN0 /\ b e. NN ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) |
| 138 |
90 137
|
sylan2 |
|- ( ( m e. NN0 /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) |
| 139 |
138
|
adantlr |
|- ( ( ( m e. NN0 /\ a e. NN ) /\ b e. ( 1 ... a ) ) -> ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) = ( ( ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ` b ) x. ( ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ` b ) ) ) |
| 140 |
70 93 109 139
|
prodfmul |
|- ( ( m e. NN0 /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) x. ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) ) ) |
| 141 |
140
|
adantlr |
|- ( ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) /\ a e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ` a ) x. ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( m / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ` a ) ) ) |
| 142 |
57 62 63 65 67 97 111 141
|
climmul |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ( ! ` m ) x. ( m + 1 ) ) ) |
| 143 |
|
facp1 |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) |
| 144 |
143
|
adantr |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) |
| 145 |
142 144
|
breqtrrd |
|- ( ( m e. NN0 /\ seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) |
| 146 |
145
|
ex |
|- ( m e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ m ) / ( 1 + ( m / n ) ) ) ) ) ~~> ( ! ` m ) -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ ( m + 1 ) ) / ( 1 + ( ( m + 1 ) / n ) ) ) ) ) ~~> ( ! ` ( m + 1 ) ) ) ) |
| 147 |
13 21 29 37 61 146
|
nn0ind |
|- ( A e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( 1 / n ) ) ^ A ) / ( 1 + ( A / n ) ) ) ) ) ~~> ( ! ` A ) ) |
| 148 |
3 147
|
eqbrtrid |
|- ( A e. NN0 -> seq 1 ( x. , F ) ~~> ( ! ` A ) ) |