| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclim.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 2 |  | seqeq3 | ⊢ ( 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) )  →  seq 1 (  ·  ,  𝐹 )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ seq 1 (  ·  ,  𝐹 )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  =  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑎  =  0  →  ( 𝑎  /  𝑛 )  =  ( 0  /  𝑛 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑎  =  0  →  ( 1  +  ( 𝑎  /  𝑛 ) )  =  ( 1  +  ( 0  /  𝑛 ) ) ) | 
						
							| 7 | 4 6 | oveq12d | ⊢ ( 𝑎  =  0  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) | 
						
							| 8 | 7 | mpteq2dv | ⊢ ( 𝑎  =  0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) ) | 
						
							| 9 | 8 | seqeq3d | ⊢ ( 𝑎  =  0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑎  =  0  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 0 ) ) | 
						
							| 11 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝑎  =  0  →  ( ! ‘ 𝑎 )  =  1 ) | 
						
							| 13 | 9 12 | breq12d | ⊢ ( 𝑎  =  0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑎 )  ↔  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) )  ⇝  1 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑎  =  𝑚  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  =  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑎  =  𝑚  →  ( 𝑎  /  𝑛 )  =  ( 𝑚  /  𝑛 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑎  =  𝑚  →  ( 1  +  ( 𝑎  /  𝑛 ) )  =  ( 1  +  ( 𝑚  /  𝑛 ) ) ) | 
						
							| 17 | 14 16 | oveq12d | ⊢ ( 𝑎  =  𝑚  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( 𝑎  =  𝑚  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) | 
						
							| 19 | 18 | seqeq3d | ⊢ ( 𝑎  =  𝑚  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑎  =  𝑚  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 21 | 19 20 | breq12d | ⊢ ( 𝑎  =  𝑚  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑎 )  ↔  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  =  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( 𝑎  /  𝑛 )  =  ( ( 𝑚  +  1 )  /  𝑛 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( 1  +  ( 𝑎  /  𝑛 ) )  =  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) | 
						
							| 25 | 22 24 | oveq12d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 26 | 25 | mpteq2dv | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) | 
						
							| 27 | 26 | seqeq3d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ! ‘ 𝑎 )  =  ( ! ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 29 | 27 28 | breq12d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑎 )  ↔  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑎  =  𝐴  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  =  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  /  𝑛 )  =  ( 𝐴  /  𝑛 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 1  +  ( 𝑎  /  𝑛 ) )  =  ( 1  +  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 33 | 30 32 | oveq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 34 | 33 | mpteq2dv | ⊢ ( 𝑎  =  𝐴  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 35 | 34 | seqeq3d | ⊢ ( 𝑎  =  𝐴  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑎  =  𝐴  →  ( ! ‘ 𝑎 )  =  ( ! ‘ 𝐴 ) ) | 
						
							| 37 | 35 36 | breq12d | ⊢ ( 𝑎  =  𝐴  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑎 )  /  ( 1  +  ( 𝑎  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑎 )  ↔  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝐴 ) ) ) | 
						
							| 38 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 39 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 40 | 38 39 | readdcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 41 | 40 | recnd | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  +  ( 1  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 42 | 41 | exp0d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  =  1 ) | 
						
							| 43 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 44 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 45 | 43 44 | div0d | ⊢ ( 𝑛  ∈  ℕ  →  ( 0  /  𝑛 )  =  0 ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  +  ( 0  /  𝑛 ) )  =  ( 1  +  0 ) ) | 
						
							| 47 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 48 | 46 47 | eqtrdi | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  +  ( 0  /  𝑛 ) )  =  1 ) | 
						
							| 49 | 42 48 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) )  =  ( 1  /  1 ) ) | 
						
							| 50 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 51 | 49 50 | eqtrdi | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) )  =  1 ) | 
						
							| 52 | 51 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  1 ) | 
						
							| 53 |  | fconstmpt | ⊢ ( ℕ  ×  { 1 } )  =  ( 𝑛  ∈  ℕ  ↦  1 ) | 
						
							| 54 | 52 53 | eqtr4i | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) )  =  ( ℕ  ×  { 1 } ) | 
						
							| 55 |  | seqeq3 | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) )  =  ( ℕ  ×  { 1 } )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( ℕ  ×  { 1 } ) ) ) | 
						
							| 56 | 54 55 | ax-mp | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) )  =  seq 1 (  ·  ,  ( ℕ  ×  { 1 } ) ) | 
						
							| 57 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 58 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 59 | 57 58 | climprod1 | ⊢ ( ⊤  →  seq 1 (  ·  ,  ( ℕ  ×  { 1 } ) )  ⇝  1 ) | 
						
							| 60 | 59 | mptru | ⊢ seq 1 (  ·  ,  ( ℕ  ×  { 1 } ) )  ⇝  1 | 
						
							| 61 | 56 60 | eqbrtri | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 0 )  /  ( 1  +  ( 0  /  𝑛 ) ) ) ) )  ⇝  1 | 
						
							| 62 |  | 1zzd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  1  ∈  ℤ ) | 
						
							| 63 |  | simpr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) ) | 
						
							| 64 |  | seqex | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ∈  V | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ∈  V ) | 
						
							| 66 |  | faclimlem2 | ⊢ ( 𝑚  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( 𝑚  +  1 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( 𝑚  +  1 ) ) | 
						
							| 68 |  | elnnuz | ⊢ ( 𝑎  ∈  ℕ  ↔  𝑎  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 69 | 68 | biimpi | ⊢ ( 𝑎  ∈  ℕ  →  𝑎  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  →  𝑎  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 71 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 72 | 71 | a1i | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℝ+ ) | 
						
							| 73 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 74 | 73 | rpreccld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 76 | 72 75 | rpaddcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  +  ( 1  /  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 77 |  | nn0z | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℤ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  𝑚  ∈  ℤ ) | 
						
							| 79 | 76 78 | rpexpcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  ∈  ℝ+ ) | 
						
							| 80 |  | 1cnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 81 |  | nn0nndivcl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑚  /  𝑛 )  ∈  ℝ ) | 
						
							| 82 | 81 | recnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑚  /  𝑛 )  ∈  ℂ ) | 
						
							| 83 | 80 82 | addcomd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  +  ( 𝑚  /  𝑛 ) )  =  ( ( 𝑚  /  𝑛 )  +  1 ) ) | 
						
							| 84 |  | nn0ge0div | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( 𝑚  /  𝑛 ) ) | 
						
							| 85 | 81 84 | ge0p1rpd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  /  𝑛 )  +  1 )  ∈  ℝ+ ) | 
						
							| 86 | 83 85 | eqeltrd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  +  ( 𝑚  /  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 87 | 79 86 | rpdivcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) )  ∈  ℝ+ ) | 
						
							| 88 | 87 | rpcnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 89 | 88 | fmpttd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 90 |  | elfznn | ⊢ ( 𝑏  ∈  ( 1 ... 𝑎 )  →  𝑏  ∈  ℕ ) | 
						
							| 91 |  | ffvelcdm | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) : ℕ ⟶ ℂ  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 92 | 89 90 91 | syl2an | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 93 | 92 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 94 |  | mulcl | ⊢ ( ( 𝑏  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑏  ·  𝑥 )  ∈  ℂ ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑏  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑏  ·  𝑥 )  ∈  ℂ ) | 
						
							| 96 | 70 93 95 | seqcl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 97 | 96 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 98 | 86 76 | rpmulcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  ∈  ℝ+ ) | 
						
							| 99 |  | nn0p1nn | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 100 | 99 | nnrpd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℝ+ ) | 
						
							| 101 |  | rpdivcl | ⊢ ( ( ( 𝑚  +  1 )  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( ( 𝑚  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 102 | 100 73 101 | syl2an | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 103 | 72 102 | rpaddcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 104 | 98 103 | rpdivcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) )  ∈  ℝ+ ) | 
						
							| 105 | 104 | rpcnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 106 | 105 | fmpttd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 107 |  | ffvelcdm | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) : ℕ ⟶ ℂ  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 108 | 106 90 107 | syl2an | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 109 | 108 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  ∈  ℂ ) | 
						
							| 110 | 70 109 95 | seqcl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 111 | 110 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 112 |  | faclimlem3 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) )  =  ( ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) )  ·  ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) ) | 
						
							| 113 |  | oveq2 | ⊢ ( 𝑛  =  𝑏  →  ( 1  /  𝑛 )  =  ( 1  /  𝑏 ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( 𝑛  =  𝑏  →  ( 1  +  ( 1  /  𝑛 ) )  =  ( 1  +  ( 1  /  𝑏 ) ) ) | 
						
							| 115 | 114 | oveq1d | ⊢ ( 𝑛  =  𝑏  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  =  ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 116 |  | oveq2 | ⊢ ( 𝑛  =  𝑏  →  ( ( 𝑚  +  1 )  /  𝑛 )  =  ( ( 𝑚  +  1 )  /  𝑏 ) ) | 
						
							| 117 | 116 | oveq2d | ⊢ ( 𝑛  =  𝑏  →  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) )  =  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) | 
						
							| 118 | 115 117 | oveq12d | ⊢ ( 𝑛  =  𝑏  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) | 
						
							| 119 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 120 |  | ovex | ⊢ ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) )  ∈  V | 
						
							| 121 | 118 119 120 | fvmpt | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) | 
						
							| 123 | 114 | oveq1d | ⊢ ( 𝑛  =  𝑏  →  ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  =  ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 ) ) | 
						
							| 124 |  | oveq2 | ⊢ ( 𝑛  =  𝑏  →  ( 𝑚  /  𝑛 )  =  ( 𝑚  /  𝑏 ) ) | 
						
							| 125 | 124 | oveq2d | ⊢ ( 𝑛  =  𝑏  →  ( 1  +  ( 𝑚  /  𝑛 ) )  =  ( 1  +  ( 𝑚  /  𝑏 ) ) ) | 
						
							| 126 | 123 125 | oveq12d | ⊢ ( 𝑛  =  𝑏  →  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) ) ) | 
						
							| 127 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) | 
						
							| 128 |  | ovex | ⊢ ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) )  ∈  V | 
						
							| 129 | 126 127 128 | fvmpt | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) ) ) | 
						
							| 130 | 125 114 | oveq12d | ⊢ ( 𝑛  =  𝑏  →  ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  =  ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) ) ) | 
						
							| 131 | 130 117 | oveq12d | ⊢ ( 𝑛  =  𝑏  →  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) | 
						
							| 132 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 133 |  | ovex | ⊢ ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) )  ∈  V | 
						
							| 134 | 131 132 133 | fvmpt | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) | 
						
							| 135 | 129 134 | oveq12d | ⊢ ( 𝑏  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 ) )  =  ( ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) )  ·  ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 ) )  =  ( ( ( ( 1  +  ( 1  /  𝑏 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑏 ) ) )  ·  ( ( ( 1  +  ( 𝑚  /  𝑏 ) )  ·  ( 1  +  ( 1  /  𝑏 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑏 ) ) ) ) ) | 
						
							| 137 | 112 122 136 | 3eqtr4d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 ) ) ) | 
						
							| 138 | 90 137 | sylan2 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 ) ) ) | 
						
							| 139 | 138 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  ∧  𝑏  ∈  ( 1 ... 𝑎 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ‘ 𝑏 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ‘ 𝑏 ) ) ) | 
						
							| 140 | 70 93 109 139 | prodfmul | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) | 
						
							| 141 | 140 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  ∧  𝑎  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑚  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) | 
						
							| 142 | 57 62 63 65 67 97 111 141 | climmul | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( ( ! ‘ 𝑚 )  ·  ( 𝑚  +  1 ) ) ) | 
						
							| 143 |  | facp1 | ⊢ ( 𝑚  ∈  ℕ0  →  ( ! ‘ ( 𝑚  +  1 ) )  =  ( ( ! ‘ 𝑚 )  ·  ( 𝑚  +  1 ) ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  ( ! ‘ ( 𝑚  +  1 ) )  =  ( ( ! ‘ 𝑚 )  ·  ( 𝑚  +  1 ) ) ) | 
						
							| 145 | 142 144 | breqtrrd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 ) )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 146 | 145 | ex | ⊢ ( 𝑚  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝑚 )  /  ( 1  +  ( 𝑚  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝑚 )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ ( 𝑚  +  1 ) )  /  ( 1  +  ( ( 𝑚  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ ( 𝑚  +  1 ) ) ) ) | 
						
							| 147 | 13 21 29 37 61 146 | nn0ind | ⊢ ( 𝐴  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑛 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑛 ) ) ) ) )  ⇝  ( ! ‘ 𝐴 ) ) | 
						
							| 148 | 3 147 | eqbrtrid | ⊢ ( 𝐴  ∈  ℕ0  →  seq 1 (  ·  ,  𝐹 )  ⇝  ( ! ‘ 𝐴 ) ) |