| Step |
Hyp |
Ref |
Expression |
| 1 |
|
faclim.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) |
| 2 |
|
seqeq3 |
⊢ ( 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) → seq 1 ( · , 𝐹 ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ seq 1 ( · , 𝐹 ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 / 𝑛 ) = ( 0 / 𝑛 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑎 = 0 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 0 / 𝑛 ) ) ) |
| 7 |
4 6
|
oveq12d |
⊢ ( 𝑎 = 0 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) |
| 8 |
7
|
mpteq2dv |
⊢ ( 𝑎 = 0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) |
| 9 |
8
|
seqeq3d |
⊢ ( 𝑎 = 0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( ! ‘ 𝑎 ) = ( ! ‘ 0 ) ) |
| 11 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝑎 = 0 → ( ! ‘ 𝑎 ) = 1 ) |
| 13 |
9 12
|
breq12d |
⊢ ( 𝑎 = 0 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ⇝ 1 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑎 = 𝑚 → ( 𝑎 / 𝑛 ) = ( 𝑚 / 𝑛 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑎 = 𝑚 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 𝑚 / 𝑛 ) ) ) |
| 17 |
14 16
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) |
| 18 |
17
|
mpteq2dv |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) |
| 19 |
18
|
seqeq3d |
⊢ ( 𝑎 = 𝑚 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑚 ) ) |
| 21 |
19 20
|
breq12d |
⊢ ( 𝑎 = 𝑚 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑎 / 𝑛 ) = ( ( 𝑚 + 1 ) / 𝑛 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) |
| 25 |
22 24
|
oveq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) |
| 27 |
26
|
seqeq3d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ! ‘ 𝑎 ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 29 |
27 28
|
breq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 / 𝑛 ) = ( 𝐴 / 𝑛 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 𝐴 / 𝑛 ) ) ) |
| 33 |
30 32
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) |
| 34 |
33
|
mpteq2dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) |
| 35 |
34
|
seqeq3d |
⊢ ( 𝑎 = 𝐴 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐴 ) ) |
| 37 |
35 36
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝐴 ) ) ) |
| 38 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 39 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 40 |
38 39
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 1 / 𝑛 ) ) ∈ ℂ ) |
| 42 |
41
|
exp0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) = 1 ) |
| 43 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 44 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 45 |
43 44
|
div0d |
⊢ ( 𝑛 ∈ ℕ → ( 0 / 𝑛 ) = 0 ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 0 / 𝑛 ) ) = ( 1 + 0 ) ) |
| 47 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 48 |
46 47
|
eqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 0 / 𝑛 ) ) = 1 ) |
| 49 |
42 48
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) = ( 1 / 1 ) ) |
| 50 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 51 |
49 50
|
eqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) = 1 ) |
| 52 |
51
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ 1 ) |
| 53 |
|
fconstmpt |
⊢ ( ℕ × { 1 } ) = ( 𝑛 ∈ ℕ ↦ 1 ) |
| 54 |
52 53
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( ℕ × { 1 } ) |
| 55 |
|
seqeq3 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( ℕ × { 1 } ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( ℕ × { 1 } ) ) ) |
| 56 |
54 55
|
ax-mp |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( ℕ × { 1 } ) ) |
| 57 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 58 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 59 |
57 58
|
climprod1 |
⊢ ( ⊤ → seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 ) |
| 60 |
59
|
mptru |
⊢ seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 |
| 61 |
56 60
|
eqbrtri |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ⇝ 1 |
| 62 |
|
1zzd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → 1 ∈ ℤ ) |
| 63 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) |
| 64 |
|
seqex |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ∈ V |
| 65 |
64
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ∈ V ) |
| 66 |
|
faclimlem2 |
⊢ ( 𝑚 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑚 + 1 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑚 + 1 ) ) |
| 68 |
|
elnnuz |
⊢ ( 𝑎 ∈ ℕ ↔ 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
| 69 |
68
|
biimpi |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
| 71 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 72 |
71
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ+ ) |
| 73 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 74 |
73
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 76 |
72 75
|
rpaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 1 / 𝑛 ) ) ∈ ℝ+ ) |
| 77 |
|
nn0z |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℤ ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 79 |
76 78
|
rpexpcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) ∈ ℝ+ ) |
| 80 |
|
1cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
| 81 |
|
nn0nndivcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 / 𝑛 ) ∈ ℝ ) |
| 82 |
81
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 / 𝑛 ) ∈ ℂ ) |
| 83 |
80 82
|
addcomd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 𝑚 / 𝑛 ) ) = ( ( 𝑚 / 𝑛 ) + 1 ) ) |
| 84 |
|
nn0ge0div |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝑚 / 𝑛 ) ) |
| 85 |
81 84
|
ge0p1rpd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 / 𝑛 ) + 1 ) ∈ ℝ+ ) |
| 86 |
83 85
|
eqeltrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 𝑚 / 𝑛 ) ) ∈ ℝ+ ) |
| 87 |
79 86
|
rpdivcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ∈ ℝ+ ) |
| 88 |
87
|
rpcnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ∈ ℂ ) |
| 89 |
88
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
| 90 |
|
elfznn |
⊢ ( 𝑏 ∈ ( 1 ... 𝑎 ) → 𝑏 ∈ ℕ ) |
| 91 |
|
ffvelcdm |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 92 |
89 90 91
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 93 |
92
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 94 |
|
mulcl |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑏 · 𝑥 ) ∈ ℂ ) |
| 95 |
94
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑏 · 𝑥 ) ∈ ℂ ) |
| 96 |
70 93 95
|
seqcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
| 97 |
96
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
| 98 |
86 76
|
rpmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) ∈ ℝ+ ) |
| 99 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
| 100 |
99
|
nnrpd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ+ ) |
| 101 |
|
rpdivcl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑚 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
| 102 |
100 73 101
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
| 103 |
72 102
|
rpaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ∈ ℝ+ ) |
| 104 |
98 103
|
rpdivcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ∈ ℝ+ ) |
| 105 |
104
|
rpcnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
| 106 |
105
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
| 107 |
|
ffvelcdm |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 108 |
106 90 107
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
| 110 |
70 109 95
|
seqcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
| 111 |
110
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
| 112 |
|
faclimlem3 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
| 113 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( 1 / 𝑛 ) = ( 1 / 𝑏 ) ) |
| 114 |
113
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑏 ) ) ) |
| 115 |
114
|
oveq1d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) = ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) ) |
| 116 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( ( 𝑚 + 1 ) / 𝑛 ) = ( ( 𝑚 + 1 ) / 𝑏 ) ) |
| 117 |
116
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) = ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) |
| 118 |
115 117
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
| 119 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
| 120 |
|
ovex |
⊢ ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ∈ V |
| 121 |
118 119 120
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
| 123 |
114
|
oveq1d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) = ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) ) |
| 124 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( 𝑚 / 𝑛 ) = ( 𝑚 / 𝑏 ) ) |
| 125 |
124
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( 𝑚 / 𝑛 ) ) = ( 1 + ( 𝑚 / 𝑏 ) ) ) |
| 126 |
123 125
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ) |
| 127 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) |
| 128 |
|
ovex |
⊢ ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ∈ V |
| 129 |
126 127 128
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ) |
| 130 |
125 114
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) = ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) ) |
| 131 |
130 117
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
| 132 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
| 133 |
|
ovex |
⊢ ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ∈ V |
| 134 |
131 132 133
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
| 135 |
129 134
|
oveq12d |
⊢ ( 𝑏 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
| 136 |
135
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
| 137 |
112 122 136
|
3eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
| 138 |
90 137
|
sylan2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
| 139 |
138
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
| 140 |
70 93 109 139
|
prodfmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) |
| 141 |
140
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) |
| 142 |
57 62 63 65 67 97 111 141
|
climmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
| 143 |
|
facp1 |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
| 145 |
142 144
|
breqtrrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) |
| 146 |
145
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
| 147 |
13 21 29 37 61 146
|
nn0ind |
⊢ ( 𝐴 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝐴 ) ) |
| 148 |
3 147
|
eqbrtrid |
⊢ ( 𝐴 ∈ ℕ0 → seq 1 ( · , 𝐹 ) ⇝ ( ! ‘ 𝐴 ) ) |