Step |
Hyp |
Ref |
Expression |
1 |
|
faclim.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) |
2 |
|
seqeq3 |
⊢ ( 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) → seq 1 ( · , 𝐹 ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ seq 1 ( · , 𝐹 ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 / 𝑛 ) = ( 0 / 𝑛 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑎 = 0 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 0 / 𝑛 ) ) ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑎 = 0 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑎 = 0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) |
9 |
8
|
seqeq3d |
⊢ ( 𝑎 = 0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( ! ‘ 𝑎 ) = ( ! ‘ 0 ) ) |
11 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑎 = 0 → ( ! ‘ 𝑎 ) = 1 ) |
13 |
9 12
|
breq12d |
⊢ ( 𝑎 = 0 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ⇝ 1 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑎 = 𝑚 → ( 𝑎 / 𝑛 ) = ( 𝑚 / 𝑛 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑎 = 𝑚 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 𝑚 / 𝑛 ) ) ) |
17 |
14 16
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) |
18 |
17
|
mpteq2dv |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) |
19 |
18
|
seqeq3d |
⊢ ( 𝑎 = 𝑚 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑚 ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑎 = 𝑚 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑎 / 𝑛 ) = ( ( 𝑚 + 1 ) / 𝑛 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) |
25 |
22 24
|
oveq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) |
27 |
26
|
seqeq3d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ! ‘ 𝑎 ) = ( ! ‘ ( 𝑚 + 1 ) ) ) |
29 |
27 28
|
breq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) = ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 / 𝑛 ) = ( 𝐴 / 𝑛 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 1 + ( 𝑎 / 𝑛 ) ) = ( 1 + ( 𝐴 / 𝑛 ) ) ) |
33 |
30 32
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) |
34 |
33
|
mpteq2dv |
⊢ ( 𝑎 = 𝐴 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) |
35 |
34
|
seqeq3d |
⊢ ( 𝑎 = 𝐴 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝐴 ) ) |
37 |
35 36
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑎 ) / ( 1 + ( 𝑎 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑎 ) ↔ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝐴 ) ) ) |
38 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
39 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
40 |
38 39
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
41 |
40
|
recnd |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 1 / 𝑛 ) ) ∈ ℂ ) |
42 |
41
|
exp0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) = 1 ) |
43 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
44 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
45 |
43 44
|
div0d |
⊢ ( 𝑛 ∈ ℕ → ( 0 / 𝑛 ) = 0 ) |
46 |
45
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 0 / 𝑛 ) ) = ( 1 + 0 ) ) |
47 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
48 |
46 47
|
eqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( 1 + ( 0 / 𝑛 ) ) = 1 ) |
49 |
42 48
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) = ( 1 / 1 ) ) |
50 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
51 |
49 50
|
eqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) = 1 ) |
52 |
51
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ 1 ) |
53 |
|
fconstmpt |
⊢ ( ℕ × { 1 } ) = ( 𝑛 ∈ ℕ ↦ 1 ) |
54 |
52 53
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( ℕ × { 1 } ) |
55 |
|
seqeq3 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) = ( ℕ × { 1 } ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( ℕ × { 1 } ) ) ) |
56 |
54 55
|
ax-mp |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) = seq 1 ( · , ( ℕ × { 1 } ) ) |
57 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
58 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
59 |
57 58
|
climprod1 |
⊢ ( ⊤ → seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 ) |
60 |
59
|
mptru |
⊢ seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 |
61 |
56 60
|
eqbrtri |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 0 ) / ( 1 + ( 0 / 𝑛 ) ) ) ) ) ⇝ 1 |
62 |
|
1zzd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → 1 ∈ ℤ ) |
63 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) |
64 |
|
seqex |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ∈ V |
65 |
64
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ∈ V ) |
66 |
|
faclimlem2 |
⊢ ( 𝑚 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑚 + 1 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑚 + 1 ) ) |
68 |
|
elnnuz |
⊢ ( 𝑎 ∈ ℕ ↔ 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
69 |
68
|
biimpi |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ( ℤ≥ ‘ 1 ) ) |
71 |
|
1rp |
⊢ 1 ∈ ℝ+ |
72 |
71
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ+ ) |
73 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
74 |
73
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
75 |
74
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
76 |
72 75
|
rpaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 1 / 𝑛 ) ) ∈ ℝ+ ) |
77 |
|
nn0z |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℤ ) |
78 |
77
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
79 |
76 78
|
rpexpcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) ∈ ℝ+ ) |
80 |
|
1cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
81 |
|
nn0nndivcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 / 𝑛 ) ∈ ℝ ) |
82 |
81
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 / 𝑛 ) ∈ ℂ ) |
83 |
80 82
|
addcomd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 𝑚 / 𝑛 ) ) = ( ( 𝑚 / 𝑛 ) + 1 ) ) |
84 |
|
nn0ge0div |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝑚 / 𝑛 ) ) |
85 |
81 84
|
ge0p1rpd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 / 𝑛 ) + 1 ) ∈ ℝ+ ) |
86 |
83 85
|
eqeltrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( 𝑚 / 𝑛 ) ) ∈ ℝ+ ) |
87 |
79 86
|
rpdivcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ∈ ℝ+ ) |
88 |
87
|
rpcnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ∈ ℂ ) |
89 |
88
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
90 |
|
elfznn |
⊢ ( 𝑏 ∈ ( 1 ... 𝑎 ) → 𝑏 ∈ ℕ ) |
91 |
|
ffvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
92 |
89 90 91
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
93 |
92
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
94 |
|
mulcl |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑏 · 𝑥 ) ∈ ℂ ) |
95 |
94
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑏 · 𝑥 ) ∈ ℂ ) |
96 |
70 93 95
|
seqcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
97 |
96
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
98 |
86 76
|
rpmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) ∈ ℝ+ ) |
99 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
100 |
99
|
nnrpd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ+ ) |
101 |
|
rpdivcl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( ( 𝑚 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
102 |
100 73 101
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
103 |
72 102
|
rpaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ∈ ℝ+ ) |
104 |
98 103
|
rpdivcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ∈ ℝ+ ) |
105 |
104
|
rpcnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
106 |
105
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
107 |
|
ffvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) : ℕ ⟶ ℂ ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
108 |
106 90 107
|
syl2an |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
109 |
108
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ∈ ℂ ) |
110 |
70 109 95
|
seqcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
111 |
110
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ∈ ℂ ) |
112 |
|
faclimlem3 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
113 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( 1 / 𝑛 ) = ( 1 / 𝑏 ) ) |
114 |
113
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑏 ) ) ) |
115 |
114
|
oveq1d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) = ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) ) |
116 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( ( 𝑚 + 1 ) / 𝑛 ) = ( ( 𝑚 + 1 ) / 𝑏 ) ) |
117 |
116
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) = ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) |
118 |
115 117
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
119 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
120 |
|
ovex |
⊢ ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ∈ V |
121 |
118 119 120
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
122 |
121
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
123 |
114
|
oveq1d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) = ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) ) |
124 |
|
oveq2 |
⊢ ( 𝑛 = 𝑏 → ( 𝑚 / 𝑛 ) = ( 𝑚 / 𝑏 ) ) |
125 |
124
|
oveq2d |
⊢ ( 𝑛 = 𝑏 → ( 1 + ( 𝑚 / 𝑛 ) ) = ( 1 + ( 𝑚 / 𝑏 ) ) ) |
126 |
123 125
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ) |
127 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) |
128 |
|
ovex |
⊢ ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ∈ V |
129 |
126 127 128
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) ) |
130 |
125 114
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) = ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) ) |
131 |
130 117
|
oveq12d |
⊢ ( 𝑛 = 𝑏 → ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
132 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) |
133 |
|
ovex |
⊢ ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ∈ V |
134 |
131 132 133
|
fvmpt |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) |
135 |
129 134
|
oveq12d |
⊢ ( 𝑏 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
136 |
135
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) = ( ( ( ( 1 + ( 1 / 𝑏 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑏 ) ) ) · ( ( ( 1 + ( 𝑚 / 𝑏 ) ) · ( 1 + ( 1 / 𝑏 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑏 ) ) ) ) ) |
137 |
112 122 136
|
3eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
138 |
90 137
|
sylan2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
139 |
138
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) ∧ 𝑏 ∈ ( 1 ... 𝑎 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ‘ 𝑏 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ‘ 𝑏 ) ) ) |
140 |
70 93 109 139
|
prodfmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) |
141 |
140
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) ∧ 𝑎 ∈ ℕ ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) = ( ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ‘ 𝑎 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑚 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ‘ 𝑎 ) ) ) |
142 |
57 62 63 65 67 97 111 141
|
climmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
143 |
|
facp1 |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
144 |
143
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → ( ! ‘ ( 𝑚 + 1 ) ) = ( ( ! ‘ 𝑚 ) · ( 𝑚 + 1 ) ) ) |
145 |
142 144
|
breqtrrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) |
146 |
145
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝑚 ) / ( 1 + ( 𝑚 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝑚 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ ( 𝑚 + 1 ) ) / ( 1 + ( ( 𝑚 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ ( 𝑚 + 1 ) ) ) ) |
147 |
13 21 29 37 61 146
|
nn0ind |
⊢ ( 𝐴 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑛 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑛 ) ) ) ) ) ⇝ ( ! ‘ 𝐴 ) ) |
148 |
3 147
|
eqbrtrid |
⊢ ( 𝐴 ∈ ℕ0 → seq 1 ( · , 𝐹 ) ⇝ ( ! ‘ 𝐴 ) ) |