Metamath Proof Explorer


Theorem faclimlem2

Description: Lemma for faclim . Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion faclimlem2 ( 𝑀 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑀 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑀 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑀 + 1 ) )

Proof

Step Hyp Ref Expression
1 faclimlem1 ( 𝑀 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑀 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑀 + 1 ) / 𝑛 ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) )
2 nnuz ℕ = ( ℤ ‘ 1 )
3 1zzd ( 𝑀 ∈ ℕ0 → 1 ∈ ℤ )
4 1cnd ( 𝑀 ∈ ℕ0 → 1 ∈ ℂ )
5 nn0p1nn ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ )
6 5 nnzd ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℤ )
7 nnex ℕ ∈ V
8 7 mptex ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ∈ V
9 8 a1i ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ∈ V )
10 oveq1 ( 𝑚 = 𝑘 → ( 𝑚 + 1 ) = ( 𝑘 + 1 ) )
11 oveq1 ( 𝑚 = 𝑘 → ( 𝑚 + ( 𝑀 + 1 ) ) = ( 𝑘 + ( 𝑀 + 1 ) ) )
12 10 11 oveq12d ( 𝑚 = 𝑘 → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) )
13 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) )
14 ovex ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ∈ V
15 12 13 14 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) )
16 15 adantl ( ( 𝑀 ∈ ℕ0𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) )
17 2 3 4 6 9 16 divcnvlin ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ⇝ 1 )
18 5 nncnd ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℂ )
19 7 mptex ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ∈ V
20 19 a1i ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ∈ V )
21 peano2nn ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ )
22 21 adantl ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ )
23 22 nnred ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ )
24 simpr ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ )
25 5 adantr ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℕ )
26 24 25 nnaddcld ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( 𝑚 + ( 𝑀 + 1 ) ) ∈ ℕ )
27 23 26 nndivred ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ∈ ℝ )
28 27 recnd ( ( 𝑀 ∈ ℕ0𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ∈ ℂ )
29 28 fmpttd ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) : ℕ ⟶ ℂ )
30 29 ffvelrnda ( ( 𝑀 ∈ ℕ0𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ )
31 12 oveq2d ( 𝑚 = 𝑘 → ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) )
32 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) )
33 ovex ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) ∈ V
34 31 32 33 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) )
35 15 oveq2d ( 𝑘 ∈ ℕ → ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) )
36 34 35 eqtr4d ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) )
37 36 adantl ( ( 𝑀 ∈ ℕ0𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) )
38 2 3 17 18 20 30 37 climmulc2 ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ⇝ ( ( 𝑀 + 1 ) · 1 ) )
39 18 mulid1d ( 𝑀 ∈ ℕ0 → ( ( 𝑀 + 1 ) · 1 ) = ( 𝑀 + 1 ) )
40 38 39 breqtrd ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ⇝ ( 𝑀 + 1 ) )
41 1 40 eqbrtrd ( 𝑀 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑀 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑀 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑀 + 1 ) )