| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclimlem1 | ⊢ ( 𝑀  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 2 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 3 |  | 1zzd | ⊢ ( 𝑀  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 4 |  | 1cnd | ⊢ ( 𝑀  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 5 |  | nn0p1nn | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 6 | 5 | nnzd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 7 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) )  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) )  ∈  V ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑚  =  𝑘  →  ( 𝑚  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑚  =  𝑘  →  ( 𝑚  +  ( 𝑀  +  1 ) )  =  ( 𝑘  +  ( 𝑀  +  1 ) ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 14 |  | ovex | ⊢ ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ∈  V | 
						
							| 15 | 12 13 14 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 17 | 2 3 4 6 9 16 | divcnvlin | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) )  ⇝  1 ) | 
						
							| 18 | 5 | nncnd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℂ ) | 
						
							| 19 | 7 | mptex | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) )  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) )  ∈  V ) | 
						
							| 21 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 23 | 22 | nnred | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 26 | 24 25 | nnaddcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  ( 𝑀  +  1 ) )  ∈  ℕ ) | 
						
							| 27 | 23 26 | nndivred | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) )  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 29 | 28 | fmpttd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 30 | 29 | ffvelcdmda | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 31 | 12 | oveq2d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 33 |  | ovex | ⊢ ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ∈  V | 
						
							| 34 | 31 32 33 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 35 | 15 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 36 | 34 35 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 38 | 2 3 17 18 20 30 37 | climmulc2 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) )  ⇝  ( ( 𝑀  +  1 )  ·  1 ) ) | 
						
							| 39 | 18 | mulridd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑀  +  1 )  ·  1 )  =  ( 𝑀  +  1 ) ) | 
						
							| 40 | 38 39 | breqtrd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑚  +  1 )  /  ( 𝑚  +  ( 𝑀  +  1 ) ) ) ) )  ⇝  ( 𝑀  +  1 ) ) | 
						
							| 41 | 1 40 | eqbrtrd | ⊢ ( 𝑀  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  ⇝  ( 𝑀  +  1 ) ) |