Step |
Hyp |
Ref |
Expression |
1 |
|
faclimlem1 |
⊢ ( 𝑀 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑀 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑀 + 1 ) / 𝑛 ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ) |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
|
1zzd |
⊢ ( 𝑀 ∈ ℕ0 → 1 ∈ ℤ ) |
4 |
|
1cnd |
⊢ ( 𝑀 ∈ ℕ0 → 1 ∈ ℂ ) |
5 |
|
nn0p1nn |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ ) |
6 |
5
|
nnzd |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℤ ) |
7 |
|
nnex |
⊢ ℕ ∈ V |
8 |
7
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ∈ V ) |
10 |
|
oveq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 + 1 ) = ( 𝑘 + 1 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 + ( 𝑀 + 1 ) ) = ( 𝑘 + ( 𝑀 + 1 ) ) ) |
12 |
10 11
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) |
13 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) |
14 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ∈ V |
15 |
12 13 14
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) |
17 |
2 3 4 6 9 16
|
divcnvlin |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ⇝ 1 ) |
18 |
5
|
nncnd |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℂ ) |
19 |
7
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ∈ V ) |
21 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
22 |
21
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
23 |
22
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℝ ) |
24 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
25 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℕ ) |
26 |
24 25
|
nnaddcld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + ( 𝑀 + 1 ) ) ∈ ℕ ) |
27 |
23 26
|
nndivred |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
29 |
28
|
fmpttd |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) : ℕ ⟶ ℂ ) |
30 |
29
|
ffvelrnda |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
31 |
12
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) ) |
32 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) |
33 |
|
ovex |
⊢ ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) ∈ V |
34 |
31 32 33
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) ) |
35 |
15
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( 𝑀 + 1 ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑀 + 1 ) ) ) ) ) |
36 |
34 35
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( 𝑀 + 1 ) · ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
38 |
2 3 17 18 20 30 37
|
climmulc2 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ⇝ ( ( 𝑀 + 1 ) · 1 ) ) |
39 |
18
|
mulid1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑀 + 1 ) · 1 ) = ( 𝑀 + 1 ) ) |
40 |
38 39
|
breqtrd |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑀 + 1 ) · ( ( 𝑚 + 1 ) / ( 𝑚 + ( 𝑀 + 1 ) ) ) ) ) ⇝ ( 𝑀 + 1 ) ) |
41 |
1 40
|
eqbrtrd |
⊢ ( 𝑀 ∈ ℕ0 → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( ( ( 1 + ( 𝑀 / 𝑛 ) ) · ( 1 + ( 1 / 𝑛 ) ) ) / ( 1 + ( ( 𝑀 + 1 ) / 𝑛 ) ) ) ) ) ⇝ ( 𝑀 + 1 ) ) |