| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑎  =  1  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 1 ) ) | 
						
							| 2 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 3 |  | seq1 | ⊢ ( 1  ∈  ℤ  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 1 )  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 1 )  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 ) | 
						
							| 5 | 1 4 | eqtrdi | ⊢ ( 𝑎  =  1  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑎  =  1  →  ( 𝑎  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑎  =  1  →  ( 𝑎  +  ( 𝑀  +  1 ) )  =  ( 1  +  ( 𝑀  +  1 ) ) ) | 
						
							| 8 | 6 7 | oveq12d | ⊢ ( 𝑎  =  1  →  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) )  =  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑎  =  1  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 10 | 5 9 | eqeq12d | ⊢ ( 𝑎  =  1  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑎  =  1  →  ( ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑎  =  𝑘  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑎  =  𝑘  →  ( 𝑎  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑎  =  𝑘  →  ( 𝑎  +  ( 𝑀  +  1 ) )  =  ( 𝑘  +  ( 𝑀  +  1 ) ) ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝑎  =  𝑘  →  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑎  =  𝑘  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 17 | 12 16 | eqeq12d | ⊢ ( 𝑎  =  𝑘  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  ↔  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑎  =  𝑘  →  ( ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( 𝑎  +  1 )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( 𝑎  +  ( 𝑀  +  1 ) )  =  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) | 
						
							| 22 | 20 21 | oveq12d | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) )  =  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 24 | 19 23 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  ↔  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑎  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  +  1 )  =  ( 𝑏  +  1 ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  +  ( 𝑀  +  1 ) )  =  ( 𝑏  +  ( 𝑀  +  1 ) ) ) | 
						
							| 29 | 27 28 | oveq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) )  =  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 31 | 26 30 | eqeq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) )  ↔  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑎 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑎  +  1 )  /  ( 𝑎  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 33 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 𝑀  /  𝑛 )  =  ( 𝑀  /  1 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 1  +  ( 𝑀  /  𝑛 ) )  =  ( 1  +  ( 𝑀  /  1 ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 1  /  𝑛 )  =  ( 1  /  1 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 1  +  ( 1  /  𝑛 ) )  =  ( 1  +  ( 1  /  1 ) ) ) | 
						
							| 38 | 35 37 | oveq12d | ⊢ ( 𝑛  =  1  →  ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  =  ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( ( 𝑀  +  1 )  /  𝑛 )  =  ( ( 𝑀  +  1 )  /  1 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) )  =  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) ) | 
						
							| 41 | 38 40 | oveq12d | ⊢ ( 𝑛  =  1  →  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 43 |  | ovex | ⊢ ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) )  ∈  V | 
						
							| 44 | 41 42 43 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 )  =  ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) ) ) | 
						
							| 45 | 33 44 | ax-mp | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 )  =  ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) ) | 
						
							| 46 |  | nn0cn | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℂ ) | 
						
							| 47 | 46 | div1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  /  1 )  =  𝑀 ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( 𝑀  /  1 ) )  =  ( 1  +  𝑀 ) ) | 
						
							| 49 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 50 | 49 | oveq2i | ⊢ ( 1  +  ( 1  /  1 ) )  =  ( 1  +  1 ) | 
						
							| 51 | 50 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( 1  /  1 ) )  =  ( 1  +  1 ) ) | 
						
							| 52 | 48 51 | oveq12d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  =  ( ( 1  +  𝑀 )  ·  ( 1  +  1 ) ) ) | 
						
							| 53 |  | nn0p1nn | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 54 | 53 | nncnd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℂ ) | 
						
							| 55 | 54 | div1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑀  +  1 )  /  1 )  =  ( 𝑀  +  1 ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) )  =  ( 1  +  ( 𝑀  +  1 ) ) ) | 
						
							| 57 | 52 56 | oveq12d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) )  =  ( ( ( 1  +  𝑀 )  ·  ( 1  +  1 ) )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 58 |  | 1cnd | ⊢ ( 𝑀  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 59 | 58 46 | addcomd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  𝑀 )  =  ( 𝑀  +  1 ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 1  +  𝑀 )  ·  ( 1  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( 1  +  1 ) ) ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( 1  +  𝑀 )  ·  ( 1  +  1 ) )  /  ( 1  +  ( 𝑀  +  1 ) ) )  =  ( ( ( 𝑀  +  1 )  ·  ( 1  +  1 ) )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 62 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 63 | 62 62 | addcli | ⊢ ( 1  +  1 )  ∈  ℂ | 
						
							| 64 | 63 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  1 )  ∈  ℂ ) | 
						
							| 65 | 33 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  1  ∈  ℕ ) | 
						
							| 66 | 65 53 | nnaddcld | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( 𝑀  +  1 ) )  ∈  ℕ ) | 
						
							| 67 | 66 | nncnd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 68 | 66 | nnne0d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  +  ( 𝑀  +  1 ) )  ≠  0 ) | 
						
							| 69 | 54 64 67 68 | divassd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( 𝑀  +  1 )  ·  ( 1  +  1 ) )  /  ( 1  +  ( 𝑀  +  1 ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 70 | 57 61 69 | 3eqtrd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( 1  +  ( 𝑀  /  1 ) )  ·  ( 1  +  ( 1  /  1 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  1 ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 71 | 45 70 | eqtrid | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ 1 )  =  ( ( 𝑀  +  1 )  ·  ( ( 1  +  1 )  /  ( 1  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 72 |  | seqp1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 73 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 74 | 72 73 | eleq2s | ⊢ ( 𝑘  ∈  ℕ  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 77 |  | oveq1 | ⊢ ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) )  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 79 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 𝑀  /  𝑛 )  =  ( 𝑀  /  ( 𝑘  +  1 ) ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1  +  ( 𝑀  /  𝑛 ) )  =  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) ) ) | 
						
							| 82 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1  /  𝑛 )  =  ( 1  /  ( 𝑘  +  1 ) ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1  +  ( 1  /  𝑛 ) )  =  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) | 
						
							| 84 | 81 83 | oveq12d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  =  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 85 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ( 𝑀  +  1 )  /  𝑛 )  =  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) )  =  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) | 
						
							| 87 | 84 86 | oveq12d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) )  =  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 88 |  | ovex | ⊢ ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  ∈  V | 
						
							| 89 | 87 42 88 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 90 | 79 89 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 91 | 90 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 93 | 53 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 94 | 93 | nncnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  +  1 )  ∈  ℂ ) | 
						
							| 95 | 79 | adantr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 96 | 95 | nnrpd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℝ+ ) | 
						
							| 97 |  | simpl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑘  ∈  ℕ ) | 
						
							| 98 | 97 | nnrpd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑘  ∈  ℝ+ ) | 
						
							| 99 | 93 | nnrpd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  +  1 )  ∈  ℝ+ ) | 
						
							| 100 | 98 99 | rpaddcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  ( 𝑀  +  1 ) )  ∈  ℝ+ ) | 
						
							| 101 | 96 100 | rpdivcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 102 | 101 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 103 |  | 1cnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 104 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑀  ∈  ℝ ) | 
						
							| 106 | 105 95 | nndivred | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  /  ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 107 | 106 | recnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  /  ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 108 | 103 107 | addcomd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  =  ( ( 𝑀  /  ( 𝑘  +  1 ) )  +  1 ) ) | 
						
							| 109 |  | nn0ge0 | ⊢ ( 𝑀  ∈  ℕ0  →  0  ≤  𝑀 ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  0  ≤  𝑀 ) | 
						
							| 111 | 105 96 110 | divge0d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  0  ≤  ( 𝑀  /  ( 𝑘  +  1 ) ) ) | 
						
							| 112 | 106 111 | ge0p1rpd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  /  ( 𝑘  +  1 ) )  +  1 )  ∈  ℝ+ ) | 
						
							| 113 | 108 112 | eqeltrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 114 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 115 | 114 | a1i | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  1  ∈  ℝ+ ) | 
						
							| 116 | 96 | rpreccld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  /  ( 𝑘  +  1 ) )  ∈  ℝ+ ) | 
						
							| 117 | 115 116 | rpaddcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 118 | 113 117 | rpmulcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  ∈  ℝ+ ) | 
						
							| 119 | 99 96 | rpdivcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) )  ∈  ℝ+ ) | 
						
							| 120 | 115 119 | rpaddcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 121 | 118 120 | rpdivcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  ∈  ℝ+ ) | 
						
							| 122 | 121 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 123 | 94 102 122 | mulassd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 124 | 101 118 | rpmulcld | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 125 | 124 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  ∈  ℂ ) | 
						
							| 126 | 120 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 127 | 95 | nncnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 128 | 120 | rpne0d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) )  ≠  0 ) | 
						
							| 129 | 95 | nnne0d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  1 )  ≠  0 ) | 
						
							| 130 | 125 126 127 128 129 | divcan5d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) )  /  ( ( 𝑘  +  1 )  ·  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 131 | 118 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 132 | 127 102 131 | mul12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 133 | 113 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 134 | 117 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 135 | 127 133 134 | mulassd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 136 | 127 103 107 | adddid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( 𝑀  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 137 | 127 | mulridd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 138 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 139 | 138 | nn0cnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑀  ∈  ℂ ) | 
						
							| 140 | 139 127 129 | divcan2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 𝑀  /  ( 𝑘  +  1 ) ) )  =  𝑀 ) | 
						
							| 141 | 137 140 | oveq12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( 𝑀  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  +  𝑀 ) ) | 
						
							| 142 | 97 | nncnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  𝑘  ∈  ℂ ) | 
						
							| 143 | 142 103 139 | addassd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  +  𝑀 )  =  ( 𝑘  +  ( 1  +  𝑀 ) ) ) | 
						
							| 144 | 103 139 | addcomd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  +  𝑀 )  =  ( 𝑀  +  1 ) ) | 
						
							| 145 | 144 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  ( 1  +  𝑀 ) )  =  ( 𝑘  +  ( 𝑀  +  1 ) ) ) | 
						
							| 146 | 143 145 | eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  +  𝑀 )  =  ( 𝑘  +  ( 𝑀  +  1 ) ) ) | 
						
							| 147 | 136 141 146 | 3eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) ) )  =  ( 𝑘  +  ( 𝑀  +  1 ) ) ) | 
						
							| 148 | 147 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  ( 𝑀  +  1 ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 149 | 135 148 | eqtr3d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( 𝑘  +  ( 𝑀  +  1 ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 𝑘  +  1 )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 𝑘  +  ( 𝑀  +  1 ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 151 | 100 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 152 | 102 151 134 | mulassd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 𝑘  +  ( 𝑀  +  1 ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 153 | 100 | rpne0d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  ( 𝑀  +  1 ) )  ≠  0 ) | 
						
							| 154 | 127 151 153 | divcan1d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 𝑘  +  ( 𝑀  +  1 ) ) )  =  ( 𝑘  +  1 ) ) | 
						
							| 155 | 154 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 156 | 116 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 1  /  ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 157 | 127 103 156 | adddid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 158 | 103 127 129 | divcan2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  /  ( 𝑘  +  1 ) ) )  =  1 ) | 
						
							| 159 | 137 158 | oveq12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 160 | 155 157 159 | 3eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 161 | 152 160 | eqtr3d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 𝑘  +  ( 𝑀  +  1 ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 162 | 132 150 161 | 3eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑘  +  1 )  +  1 ) ) | 
						
							| 163 | 119 | rpcnd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 164 | 127 103 163 | adddid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 165 | 94 127 129 | divcan2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 166 | 137 165 | oveq12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  1 )  +  ( ( 𝑘  +  1 )  ·  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) | 
						
							| 167 | 164 166 | eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑘  +  1 )  ·  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  =  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) | 
						
							| 168 | 162 167 | oveq12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) ) )  /  ( ( 𝑘  +  1 )  ·  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 169 | 102 131 126 128 | divassd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) )  =  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 170 | 130 168 169 | 3eqtr3rd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) )  =  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  ( 𝑘  +  1 ) ) )  ·  ( 1  +  ( 1  /  ( 𝑘  +  1 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  ( 𝑘  +  1 ) ) ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 172 | 92 123 171 | 3eqtrd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) )  →  ( ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 174 | 76 78 173 | 3eqtrd | ⊢ ( ( ( 𝑘  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 175 | 174 | exp31 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑀  ∈  ℕ0  →  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 176 | 175 | a2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑀  +  1 ) ) ) ) )  →  ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑀  +  1 )  ·  ( ( ( 𝑘  +  1 )  +  1 )  /  ( ( 𝑘  +  1 )  +  ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 177 | 11 18 25 32 71 176 | nnind | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝑀  ∈  ℕ0  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 178 | 177 | impcom | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 179 |  | oveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥  +  1 )  =  ( 𝑏  +  1 ) ) | 
						
							| 180 |  | oveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥  +  ( 𝑀  +  1 ) )  =  ( 𝑏  +  ( 𝑀  +  1 ) ) ) | 
						
							| 181 | 179 180 | oveq12d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) )  =  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) | 
						
							| 182 | 181 | oveq2d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 183 |  | eqid | ⊢ ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 184 |  | ovex | ⊢ ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) )  ∈  V | 
						
							| 185 | 182 183 184 | fvmpt | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 186 | 185 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑀  +  1 )  ·  ( ( 𝑏  +  1 )  /  ( 𝑏  +  ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 187 | 178 186 | eqtr4d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑏  ∈  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 ) ) | 
						
							| 188 | 187 | ralrimiva | ⊢ ( 𝑀  ∈  ℕ0  →  ∀ 𝑏  ∈  ℕ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 ) ) | 
						
							| 189 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 190 | 2 189 | ax-mp | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) | 
						
							| 191 | 73 | fneq2i | ⊢ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ℕ  ↔  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 192 | 190 191 | mpbir | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ℕ | 
						
							| 193 |  | ovex | ⊢ ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) )  ∈  V | 
						
							| 194 | 193 183 | fnmpti | ⊢ ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) )  Fn  ℕ | 
						
							| 195 |  | eqfnfv | ⊢ ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  Fn  ℕ  ∧  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) )  Fn  ℕ )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ∀ 𝑏  ∈  ℕ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 ) ) ) | 
						
							| 196 | 192 194 195 | mp2an | ⊢ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) )  ↔  ∀ 𝑏  ∈  ℕ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) ) ‘ 𝑏 )  =  ( ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ‘ 𝑏 ) ) | 
						
							| 197 | 188 196 | sylibr | ⊢ ( 𝑀  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ( ( ( 1  +  ( 𝑀  /  𝑛 ) )  ·  ( 1  +  ( 1  /  𝑛 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝑛 ) ) ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑀  +  1 )  ·  ( ( 𝑥  +  1 )  /  ( 𝑥  +  ( 𝑀  +  1 ) ) ) ) ) ) |