| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( a = 1 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` 1 ) ) | 
						
							| 2 |  | 1z |  |-  1 e. ZZ | 
						
							| 3 |  | seq1 |  |-  ( 1 e. ZZ -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` 1 ) = ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` 1 ) = ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) | 
						
							| 5 | 1 4 | eqtrdi |  |-  ( a = 1 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) ) | 
						
							| 6 |  | oveq1 |  |-  ( a = 1 -> ( a + 1 ) = ( 1 + 1 ) ) | 
						
							| 7 |  | oveq1 |  |-  ( a = 1 -> ( a + ( M + 1 ) ) = ( 1 + ( M + 1 ) ) ) | 
						
							| 8 | 6 7 | oveq12d |  |-  ( a = 1 -> ( ( a + 1 ) / ( a + ( M + 1 ) ) ) = ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( a = 1 -> ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) | 
						
							| 10 | 5 9 | eqeq12d |  |-  ( a = 1 -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) <-> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) ) | 
						
							| 11 | 10 | imbi2d |  |-  ( a = 1 -> ( ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) ) <-> ( M e. NN0 -> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( a = k -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) ) | 
						
							| 13 |  | oveq1 |  |-  ( a = k -> ( a + 1 ) = ( k + 1 ) ) | 
						
							| 14 |  | oveq1 |  |-  ( a = k -> ( a + ( M + 1 ) ) = ( k + ( M + 1 ) ) ) | 
						
							| 15 | 13 14 | oveq12d |  |-  ( a = k -> ( ( a + 1 ) / ( a + ( M + 1 ) ) ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( a = k -> ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) | 
						
							| 17 | 12 16 | eqeq12d |  |-  ( a = k -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) <-> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( a = k -> ( ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) ) <-> ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( a = ( k + 1 ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) ) | 
						
							| 20 |  | oveq1 |  |-  ( a = ( k + 1 ) -> ( a + 1 ) = ( ( k + 1 ) + 1 ) ) | 
						
							| 21 |  | oveq1 |  |-  ( a = ( k + 1 ) -> ( a + ( M + 1 ) ) = ( ( k + 1 ) + ( M + 1 ) ) ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( a = ( k + 1 ) -> ( ( a + 1 ) / ( a + ( M + 1 ) ) ) = ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( a = ( k + 1 ) -> ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) | 
						
							| 24 | 19 23 | eqeq12d |  |-  ( a = ( k + 1 ) -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) <-> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) ) | 
						
							| 25 | 24 | imbi2d |  |-  ( a = ( k + 1 ) -> ( ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) ) <-> ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 26 |  | fveq2 |  |-  ( a = b -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) ) | 
						
							| 27 |  | oveq1 |  |-  ( a = b -> ( a + 1 ) = ( b + 1 ) ) | 
						
							| 28 |  | oveq1 |  |-  ( a = b -> ( a + ( M + 1 ) ) = ( b + ( M + 1 ) ) ) | 
						
							| 29 | 27 28 | oveq12d |  |-  ( a = b -> ( ( a + 1 ) / ( a + ( M + 1 ) ) ) = ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( a = b -> ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) | 
						
							| 31 | 26 30 | eqeq12d |  |-  ( a = b -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) <-> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) ) | 
						
							| 32 | 31 | imbi2d |  |-  ( a = b -> ( ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` a ) = ( ( M + 1 ) x. ( ( a + 1 ) / ( a + ( M + 1 ) ) ) ) ) <-> ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 33 |  | 1nn |  |-  1 e. NN | 
						
							| 34 |  | oveq2 |  |-  ( n = 1 -> ( M / n ) = ( M / 1 ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( n = 1 -> ( 1 + ( M / n ) ) = ( 1 + ( M / 1 ) ) ) | 
						
							| 36 |  | oveq2 |  |-  ( n = 1 -> ( 1 / n ) = ( 1 / 1 ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( n = 1 -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / 1 ) ) ) | 
						
							| 38 | 35 37 | oveq12d |  |-  ( n = 1 -> ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) = ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( n = 1 -> ( ( M + 1 ) / n ) = ( ( M + 1 ) / 1 ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( n = 1 -> ( 1 + ( ( M + 1 ) / n ) ) = ( 1 + ( ( M + 1 ) / 1 ) ) ) | 
						
							| 41 | 38 40 | oveq12d |  |-  ( n = 1 -> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) = ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) ) | 
						
							| 42 |  | eqid |  |-  ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) = ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) | 
						
							| 43 |  | ovex |  |-  ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) e. _V | 
						
							| 44 | 41 42 43 | fvmpt |  |-  ( 1 e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) = ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) ) | 
						
							| 45 | 33 44 | ax-mp |  |-  ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) = ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) | 
						
							| 46 |  | nn0cn |  |-  ( M e. NN0 -> M e. CC ) | 
						
							| 47 | 46 | div1d |  |-  ( M e. NN0 -> ( M / 1 ) = M ) | 
						
							| 48 | 47 | oveq2d |  |-  ( M e. NN0 -> ( 1 + ( M / 1 ) ) = ( 1 + M ) ) | 
						
							| 49 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 50 | 49 | oveq2i |  |-  ( 1 + ( 1 / 1 ) ) = ( 1 + 1 ) | 
						
							| 51 | 50 | a1i |  |-  ( M e. NN0 -> ( 1 + ( 1 / 1 ) ) = ( 1 + 1 ) ) | 
						
							| 52 | 48 51 | oveq12d |  |-  ( M e. NN0 -> ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) = ( ( 1 + M ) x. ( 1 + 1 ) ) ) | 
						
							| 53 |  | nn0p1nn |  |-  ( M e. NN0 -> ( M + 1 ) e. NN ) | 
						
							| 54 | 53 | nncnd |  |-  ( M e. NN0 -> ( M + 1 ) e. CC ) | 
						
							| 55 | 54 | div1d |  |-  ( M e. NN0 -> ( ( M + 1 ) / 1 ) = ( M + 1 ) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( M e. NN0 -> ( 1 + ( ( M + 1 ) / 1 ) ) = ( 1 + ( M + 1 ) ) ) | 
						
							| 57 | 52 56 | oveq12d |  |-  ( M e. NN0 -> ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) = ( ( ( 1 + M ) x. ( 1 + 1 ) ) / ( 1 + ( M + 1 ) ) ) ) | 
						
							| 58 |  | 1cnd |  |-  ( M e. NN0 -> 1 e. CC ) | 
						
							| 59 | 58 46 | addcomd |  |-  ( M e. NN0 -> ( 1 + M ) = ( M + 1 ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( M e. NN0 -> ( ( 1 + M ) x. ( 1 + 1 ) ) = ( ( M + 1 ) x. ( 1 + 1 ) ) ) | 
						
							| 61 | 60 | oveq1d |  |-  ( M e. NN0 -> ( ( ( 1 + M ) x. ( 1 + 1 ) ) / ( 1 + ( M + 1 ) ) ) = ( ( ( M + 1 ) x. ( 1 + 1 ) ) / ( 1 + ( M + 1 ) ) ) ) | 
						
							| 62 |  | ax-1cn |  |-  1 e. CC | 
						
							| 63 | 62 62 | addcli |  |-  ( 1 + 1 ) e. CC | 
						
							| 64 | 63 | a1i |  |-  ( M e. NN0 -> ( 1 + 1 ) e. CC ) | 
						
							| 65 | 33 | a1i |  |-  ( M e. NN0 -> 1 e. NN ) | 
						
							| 66 | 65 53 | nnaddcld |  |-  ( M e. NN0 -> ( 1 + ( M + 1 ) ) e. NN ) | 
						
							| 67 | 66 | nncnd |  |-  ( M e. NN0 -> ( 1 + ( M + 1 ) ) e. CC ) | 
						
							| 68 | 66 | nnne0d |  |-  ( M e. NN0 -> ( 1 + ( M + 1 ) ) =/= 0 ) | 
						
							| 69 | 54 64 67 68 | divassd |  |-  ( M e. NN0 -> ( ( ( M + 1 ) x. ( 1 + 1 ) ) / ( 1 + ( M + 1 ) ) ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) | 
						
							| 70 | 57 61 69 | 3eqtrd |  |-  ( M e. NN0 -> ( ( ( 1 + ( M / 1 ) ) x. ( 1 + ( 1 / 1 ) ) ) / ( 1 + ( ( M + 1 ) / 1 ) ) ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) | 
						
							| 71 | 45 70 | eqtrid |  |-  ( M e. NN0 -> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` 1 ) = ( ( M + 1 ) x. ( ( 1 + 1 ) / ( 1 + ( M + 1 ) ) ) ) ) | 
						
							| 72 |  | seqp1 |  |-  ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 73 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 74 | 72 73 | eleq2s |  |-  ( k e. NN -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( k e. NN /\ M e. NN0 ) /\ ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 77 |  | oveq1 |  |-  ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ( k e. NN /\ M e. NN0 ) /\ ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) ) | 
						
							| 79 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 80 |  | oveq2 |  |-  ( n = ( k + 1 ) -> ( M / n ) = ( M / ( k + 1 ) ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( n = ( k + 1 ) -> ( 1 + ( M / n ) ) = ( 1 + ( M / ( k + 1 ) ) ) ) | 
						
							| 82 |  | oveq2 |  |-  ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( n = ( k + 1 ) -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / ( k + 1 ) ) ) ) | 
						
							| 84 | 81 83 | oveq12d |  |-  ( n = ( k + 1 ) -> ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) = ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) | 
						
							| 85 |  | oveq2 |  |-  ( n = ( k + 1 ) -> ( ( M + 1 ) / n ) = ( ( M + 1 ) / ( k + 1 ) ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( n = ( k + 1 ) -> ( 1 + ( ( M + 1 ) / n ) ) = ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) | 
						
							| 87 | 84 86 | oveq12d |  |-  ( n = ( k + 1 ) -> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) = ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) | 
						
							| 88 |  | ovex |  |-  ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) e. _V | 
						
							| 89 | 87 42 88 | fvmpt |  |-  ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) = ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) | 
						
							| 90 | 79 89 | syl |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) = ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( k e. NN -> ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) ) | 
						
							| 93 | 53 | adantl |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( M + 1 ) e. NN ) | 
						
							| 94 | 93 | nncnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( M + 1 ) e. CC ) | 
						
							| 95 | 79 | adantr |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + 1 ) e. NN ) | 
						
							| 96 | 95 | nnrpd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + 1 ) e. RR+ ) | 
						
							| 97 |  | simpl |  |-  ( ( k e. NN /\ M e. NN0 ) -> k e. NN ) | 
						
							| 98 | 97 | nnrpd |  |-  ( ( k e. NN /\ M e. NN0 ) -> k e. RR+ ) | 
						
							| 99 | 93 | nnrpd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( M + 1 ) e. RR+ ) | 
						
							| 100 | 98 99 | rpaddcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + ( M + 1 ) ) e. RR+ ) | 
						
							| 101 | 96 100 | rpdivcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) / ( k + ( M + 1 ) ) ) e. RR+ ) | 
						
							| 102 | 101 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) / ( k + ( M + 1 ) ) ) e. CC ) | 
						
							| 103 |  | 1cnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> 1 e. CC ) | 
						
							| 104 |  | nn0re |  |-  ( M e. NN0 -> M e. RR ) | 
						
							| 105 | 104 | adantl |  |-  ( ( k e. NN /\ M e. NN0 ) -> M e. RR ) | 
						
							| 106 | 105 95 | nndivred |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( M / ( k + 1 ) ) e. RR ) | 
						
							| 107 | 106 | recnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( M / ( k + 1 ) ) e. CC ) | 
						
							| 108 | 103 107 | addcomd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( M / ( k + 1 ) ) ) = ( ( M / ( k + 1 ) ) + 1 ) ) | 
						
							| 109 |  | nn0ge0 |  |-  ( M e. NN0 -> 0 <_ M ) | 
						
							| 110 | 109 | adantl |  |-  ( ( k e. NN /\ M e. NN0 ) -> 0 <_ M ) | 
						
							| 111 | 105 96 110 | divge0d |  |-  ( ( k e. NN /\ M e. NN0 ) -> 0 <_ ( M / ( k + 1 ) ) ) | 
						
							| 112 | 106 111 | ge0p1rpd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( M / ( k + 1 ) ) + 1 ) e. RR+ ) | 
						
							| 113 | 108 112 | eqeltrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( M / ( k + 1 ) ) ) e. RR+ ) | 
						
							| 114 |  | 1rp |  |-  1 e. RR+ | 
						
							| 115 | 114 | a1i |  |-  ( ( k e. NN /\ M e. NN0 ) -> 1 e. RR+ ) | 
						
							| 116 | 96 | rpreccld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 / ( k + 1 ) ) e. RR+ ) | 
						
							| 117 | 115 116 | rpaddcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( 1 / ( k + 1 ) ) ) e. RR+ ) | 
						
							| 118 | 113 117 | rpmulcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) e. RR+ ) | 
						
							| 119 | 99 96 | rpdivcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( M + 1 ) / ( k + 1 ) ) e. RR+ ) | 
						
							| 120 | 115 119 | rpaddcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) e. RR+ ) | 
						
							| 121 | 118 120 | rpdivcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) e. RR+ ) | 
						
							| 122 | 121 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) e. CC ) | 
						
							| 123 | 94 102 122 | mulassd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) ) ) | 
						
							| 124 | 101 118 | rpmulcld |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) e. RR+ ) | 
						
							| 125 | 124 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) e. CC ) | 
						
							| 126 | 120 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) e. CC ) | 
						
							| 127 | 95 | nncnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + 1 ) e. CC ) | 
						
							| 128 | 120 | rpne0d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) =/= 0 ) | 
						
							| 129 | 95 | nnne0d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + 1 ) =/= 0 ) | 
						
							| 130 | 125 126 127 128 129 | divcan5d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) / ( ( k + 1 ) x. ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) = ( ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) | 
						
							| 131 | 118 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) e. CC ) | 
						
							| 132 | 127 102 131 | mul12d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) = ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( k + 1 ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) ) | 
						
							| 133 | 113 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( M / ( k + 1 ) ) ) e. CC ) | 
						
							| 134 | 117 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + ( 1 / ( k + 1 ) ) ) e. CC ) | 
						
							| 135 | 127 133 134 | mulassd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. ( 1 + ( M / ( k + 1 ) ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( k + 1 ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) | 
						
							| 136 | 127 103 107 | adddid |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 + ( M / ( k + 1 ) ) ) ) = ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( M / ( k + 1 ) ) ) ) ) | 
						
							| 137 | 127 | mulridd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. 1 ) = ( k + 1 ) ) | 
						
							| 138 |  | simpr |  |-  ( ( k e. NN /\ M e. NN0 ) -> M e. NN0 ) | 
						
							| 139 | 138 | nn0cnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> M e. CC ) | 
						
							| 140 | 139 127 129 | divcan2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( M / ( k + 1 ) ) ) = M ) | 
						
							| 141 | 137 140 | oveq12d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( M / ( k + 1 ) ) ) ) = ( ( k + 1 ) + M ) ) | 
						
							| 142 | 97 | nncnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> k e. CC ) | 
						
							| 143 | 142 103 139 | addassd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) + M ) = ( k + ( 1 + M ) ) ) | 
						
							| 144 | 103 139 | addcomd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 + M ) = ( M + 1 ) ) | 
						
							| 145 | 144 | oveq2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + ( 1 + M ) ) = ( k + ( M + 1 ) ) ) | 
						
							| 146 | 143 145 | eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) + M ) = ( k + ( M + 1 ) ) ) | 
						
							| 147 | 136 141 146 | 3eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 + ( M / ( k + 1 ) ) ) ) = ( k + ( M + 1 ) ) ) | 
						
							| 148 | 147 | oveq1d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. ( 1 + ( M / ( k + 1 ) ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( k + ( M + 1 ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) | 
						
							| 149 | 135 148 | eqtr3d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) = ( ( k + ( M + 1 ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) | 
						
							| 150 | 149 | oveq2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( k + 1 ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) = ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( k + ( M + 1 ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) | 
						
							| 151 | 100 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + ( M + 1 ) ) e. CC ) | 
						
							| 152 | 102 151 134 | mulassd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( k + ( M + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( k + ( M + 1 ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) | 
						
							| 153 | 100 | rpne0d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( k + ( M + 1 ) ) =/= 0 ) | 
						
							| 154 | 127 151 153 | divcan1d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( k + ( M + 1 ) ) ) = ( k + 1 ) ) | 
						
							| 155 | 154 | oveq1d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( k + ( M + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( k + 1 ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) | 
						
							| 156 | 116 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( 1 / ( k + 1 ) ) e. CC ) | 
						
							| 157 | 127 103 156 | adddid |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( 1 / ( k + 1 ) ) ) ) ) | 
						
							| 158 | 103 127 129 | divcan2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 / ( k + 1 ) ) ) = 1 ) | 
						
							| 159 | 137 158 | oveq12d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( 1 / ( k + 1 ) ) ) ) = ( ( k + 1 ) + 1 ) ) | 
						
							| 160 | 155 157 159 | 3eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( k + ( M + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) = ( ( k + 1 ) + 1 ) ) | 
						
							| 161 | 152 160 | eqtr3d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( k + ( M + 1 ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) = ( ( k + 1 ) + 1 ) ) | 
						
							| 162 | 132 150 161 | 3eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) + 1 ) ) | 
						
							| 163 | 119 | rpcnd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( M + 1 ) / ( k + 1 ) ) e. CC ) | 
						
							| 164 | 127 103 163 | adddid |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) = ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( ( M + 1 ) / ( k + 1 ) ) ) ) ) | 
						
							| 165 | 94 127 129 | divcan2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( ( M + 1 ) / ( k + 1 ) ) ) = ( M + 1 ) ) | 
						
							| 166 | 137 165 | oveq12d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. 1 ) + ( ( k + 1 ) x. ( ( M + 1 ) / ( k + 1 ) ) ) ) = ( ( k + 1 ) + ( M + 1 ) ) ) | 
						
							| 167 | 164 166 | eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( k + 1 ) x. ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) = ( ( k + 1 ) + ( M + 1 ) ) ) | 
						
							| 168 | 162 167 | oveq12d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) ) / ( ( k + 1 ) x. ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) = ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) | 
						
							| 169 | 102 131 126 128 | divassd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) = ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) ) | 
						
							| 170 | 130 168 169 | 3eqtr3rd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) = ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( M + 1 ) x. ( ( ( k + 1 ) / ( k + ( M + 1 ) ) ) x. ( ( ( 1 + ( M / ( k + 1 ) ) ) x. ( 1 + ( 1 / ( k + 1 ) ) ) ) / ( 1 + ( ( M + 1 ) / ( k + 1 ) ) ) ) ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) | 
						
							| 172 | 92 123 171 | 3eqtrd |  |-  ( ( k e. NN /\ M e. NN0 ) -> ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ( k e. NN /\ M e. NN0 ) /\ ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) -> ( ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) x. ( ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ` ( k + 1 ) ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) | 
						
							| 174 | 76 78 173 | 3eqtrd |  |-  ( ( ( k e. NN /\ M e. NN0 ) /\ ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) | 
						
							| 175 | 174 | exp31 |  |-  ( k e. NN -> ( M e. NN0 -> ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 176 | 175 | a2d |  |-  ( k e. NN -> ( ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) -> ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` ( k + 1 ) ) = ( ( M + 1 ) x. ( ( ( k + 1 ) + 1 ) / ( ( k + 1 ) + ( M + 1 ) ) ) ) ) ) ) | 
						
							| 177 | 11 18 25 32 71 176 | nnind |  |-  ( b e. NN -> ( M e. NN0 -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) ) | 
						
							| 178 | 177 | impcom |  |-  ( ( M e. NN0 /\ b e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) | 
						
							| 179 |  | oveq1 |  |-  ( x = b -> ( x + 1 ) = ( b + 1 ) ) | 
						
							| 180 |  | oveq1 |  |-  ( x = b -> ( x + ( M + 1 ) ) = ( b + ( M + 1 ) ) ) | 
						
							| 181 | 179 180 | oveq12d |  |-  ( x = b -> ( ( x + 1 ) / ( x + ( M + 1 ) ) ) = ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( x = b -> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) | 
						
							| 183 |  | eqid |  |-  ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) = ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) | 
						
							| 184 |  | ovex |  |-  ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) e. _V | 
						
							| 185 | 182 183 184 | fvmpt |  |-  ( b e. NN -> ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) | 
						
							| 186 | 185 | adantl |  |-  ( ( M e. NN0 /\ b e. NN ) -> ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) = ( ( M + 1 ) x. ( ( b + 1 ) / ( b + ( M + 1 ) ) ) ) ) | 
						
							| 187 | 178 186 | eqtr4d |  |-  ( ( M e. NN0 /\ b e. NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) ) | 
						
							| 188 | 187 | ralrimiva |  |-  ( M e. NN0 -> A. b e. NN ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) ) | 
						
							| 189 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 190 | 2 189 | ax-mp |  |-  seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn ( ZZ>= ` 1 ) | 
						
							| 191 | 73 | fneq2i |  |-  ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn NN <-> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 192 | 190 191 | mpbir |  |-  seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn NN | 
						
							| 193 |  | ovex |  |-  ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) e. _V | 
						
							| 194 | 193 183 | fnmpti |  |-  ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) Fn NN | 
						
							| 195 |  | eqfnfv |  |-  ( ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) Fn NN /\ ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) Fn NN ) -> ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) = ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) <-> A. b e. NN ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) ) ) | 
						
							| 196 | 192 194 195 | mp2an |  |-  ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) = ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) <-> A. b e. NN ( seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ` b ) = ( ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ` b ) ) | 
						
							| 197 | 188 196 | sylibr |  |-  ( M e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) = ( x e. NN |-> ( ( M + 1 ) x. ( ( x + 1 ) / ( x + ( M + 1 ) ) ) ) ) ) |