| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclimlem1 |  |-  ( M e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) = ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ) | 
						
							| 2 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 3 |  | 1zzd |  |-  ( M e. NN0 -> 1 e. ZZ ) | 
						
							| 4 |  | 1cnd |  |-  ( M e. NN0 -> 1 e. CC ) | 
						
							| 5 |  | nn0p1nn |  |-  ( M e. NN0 -> ( M + 1 ) e. NN ) | 
						
							| 6 | 5 | nnzd |  |-  ( M e. NN0 -> ( M + 1 ) e. ZZ ) | 
						
							| 7 |  | nnex |  |-  NN e. _V | 
						
							| 8 | 7 | mptex |  |-  ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) e. _V | 
						
							| 9 | 8 | a1i |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) e. _V ) | 
						
							| 10 |  | oveq1 |  |-  ( m = k -> ( m + 1 ) = ( k + 1 ) ) | 
						
							| 11 |  | oveq1 |  |-  ( m = k -> ( m + ( M + 1 ) ) = ( k + ( M + 1 ) ) ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( m = k -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) = ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) | 
						
							| 14 |  | ovex |  |-  ( ( k + 1 ) / ( k + ( M + 1 ) ) ) e. _V | 
						
							| 15 | 12 13 14 | fvmpt |  |-  ( k e. NN -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) | 
						
							| 17 | 2 3 4 6 9 16 | divcnvlin |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ~~> 1 ) | 
						
							| 18 | 5 | nncnd |  |-  ( M e. NN0 -> ( M + 1 ) e. CC ) | 
						
							| 19 | 7 | mptex |  |-  ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) e. _V | 
						
							| 20 | 19 | a1i |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) e. _V ) | 
						
							| 21 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 22 | 21 | adantl |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 23 | 22 | nnred |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( m + 1 ) e. RR ) | 
						
							| 24 |  | simpr |  |-  ( ( M e. NN0 /\ m e. NN ) -> m e. NN ) | 
						
							| 25 | 5 | adantr |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( M + 1 ) e. NN ) | 
						
							| 26 | 24 25 | nnaddcld |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( m + ( M + 1 ) ) e. NN ) | 
						
							| 27 | 23 26 | nndivred |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( ( M e. NN0 /\ m e. NN ) -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) e. CC ) | 
						
							| 29 | 28 | fmpttd |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) : NN --> CC ) | 
						
							| 30 | 29 | ffvelcdmda |  |-  ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) e. CC ) | 
						
							| 31 | 12 | oveq2d |  |-  ( m = k -> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) | 
						
							| 32 |  | eqid |  |-  ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) = ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) | 
						
							| 33 |  | ovex |  |-  ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) e. _V | 
						
							| 34 | 31 32 33 | fvmpt |  |-  ( k e. NN -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) | 
						
							| 35 | 15 | oveq2d |  |-  ( k e. NN -> ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) | 
						
							| 36 | 34 35 | eqtr4d |  |-  ( k e. NN -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) ) | 
						
							| 38 | 2 3 17 18 20 30 37 | climmulc2 |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ~~> ( ( M + 1 ) x. 1 ) ) | 
						
							| 39 | 18 | mulridd |  |-  ( M e. NN0 -> ( ( M + 1 ) x. 1 ) = ( M + 1 ) ) | 
						
							| 40 | 38 39 | breqtrd |  |-  ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ~~> ( M + 1 ) ) | 
						
							| 41 | 1 40 | eqbrtrd |  |-  ( M e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ~~> ( M + 1 ) ) |