Step |
Hyp |
Ref |
Expression |
1 |
|
faclimlem1 |
|- ( M e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) = ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1zzd |
|- ( M e. NN0 -> 1 e. ZZ ) |
4 |
|
1cnd |
|- ( M e. NN0 -> 1 e. CC ) |
5 |
|
nn0p1nn |
|- ( M e. NN0 -> ( M + 1 ) e. NN ) |
6 |
5
|
nnzd |
|- ( M e. NN0 -> ( M + 1 ) e. ZZ ) |
7 |
|
nnex |
|- NN e. _V |
8 |
7
|
mptex |
|- ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) e. _V |
9 |
8
|
a1i |
|- ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) e. _V ) |
10 |
|
oveq1 |
|- ( m = k -> ( m + 1 ) = ( k + 1 ) ) |
11 |
|
oveq1 |
|- ( m = k -> ( m + ( M + 1 ) ) = ( k + ( M + 1 ) ) ) |
12 |
10 11
|
oveq12d |
|- ( m = k -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) |
13 |
|
eqid |
|- ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) = ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) |
14 |
|
ovex |
|- ( ( k + 1 ) / ( k + ( M + 1 ) ) ) e. _V |
15 |
12 13 14
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) |
16 |
15
|
adantl |
|- ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) |
17 |
2 3 4 6 9 16
|
divcnvlin |
|- ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ~~> 1 ) |
18 |
5
|
nncnd |
|- ( M e. NN0 -> ( M + 1 ) e. CC ) |
19 |
7
|
mptex |
|- ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) e. _V |
20 |
19
|
a1i |
|- ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) e. _V ) |
21 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
22 |
21
|
adantl |
|- ( ( M e. NN0 /\ m e. NN ) -> ( m + 1 ) e. NN ) |
23 |
22
|
nnred |
|- ( ( M e. NN0 /\ m e. NN ) -> ( m + 1 ) e. RR ) |
24 |
|
simpr |
|- ( ( M e. NN0 /\ m e. NN ) -> m e. NN ) |
25 |
5
|
adantr |
|- ( ( M e. NN0 /\ m e. NN ) -> ( M + 1 ) e. NN ) |
26 |
24 25
|
nnaddcld |
|- ( ( M e. NN0 /\ m e. NN ) -> ( m + ( M + 1 ) ) e. NN ) |
27 |
23 26
|
nndivred |
|- ( ( M e. NN0 /\ m e. NN ) -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) e. RR ) |
28 |
27
|
recnd |
|- ( ( M e. NN0 /\ m e. NN ) -> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) e. CC ) |
29 |
28
|
fmpttd |
|- ( M e. NN0 -> ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) : NN --> CC ) |
30 |
29
|
ffvelrnda |
|- ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) e. CC ) |
31 |
12
|
oveq2d |
|- ( m = k -> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) |
32 |
|
eqid |
|- ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) = ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) |
33 |
|
ovex |
|- ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) e. _V |
34 |
31 32 33
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) |
35 |
15
|
oveq2d |
|- ( k e. NN -> ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) = ( ( M + 1 ) x. ( ( k + 1 ) / ( k + ( M + 1 ) ) ) ) ) |
36 |
34 35
|
eqtr4d |
|- ( k e. NN -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) ) |
37 |
36
|
adantl |
|- ( ( M e. NN0 /\ k e. NN ) -> ( ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ` k ) = ( ( M + 1 ) x. ( ( m e. NN |-> ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ` k ) ) ) |
38 |
2 3 17 18 20 30 37
|
climmulc2 |
|- ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ~~> ( ( M + 1 ) x. 1 ) ) |
39 |
18
|
mulid1d |
|- ( M e. NN0 -> ( ( M + 1 ) x. 1 ) = ( M + 1 ) ) |
40 |
38 39
|
breqtrd |
|- ( M e. NN0 -> ( m e. NN |-> ( ( M + 1 ) x. ( ( m + 1 ) / ( m + ( M + 1 ) ) ) ) ) ~~> ( M + 1 ) ) |
41 |
1 40
|
eqbrtrd |
|- ( M e. NN0 -> seq 1 ( x. , ( n e. NN |-> ( ( ( 1 + ( M / n ) ) x. ( 1 + ( 1 / n ) ) ) / ( 1 + ( ( M + 1 ) / n ) ) ) ) ) ~~> ( M + 1 ) ) |