Metamath Proof Explorer


Theorem faclimlem2

Description: Lemma for faclim . Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion faclimlem2 M0seq1×n1+Mn1+1n1+M+1nM+1

Proof

Step Hyp Ref Expression
1 faclimlem1 M0seq1×n1+Mn1+1n1+M+1n=mM+1m+1m+M+1
2 nnuz =1
3 1zzd M01
4 1cnd M01
5 nn0p1nn M0M+1
6 5 nnzd M0M+1
7 nnex V
8 7 mptex mm+1m+M+1V
9 8 a1i M0mm+1m+M+1V
10 oveq1 m=km+1=k+1
11 oveq1 m=km+M+1=k+M+1
12 10 11 oveq12d m=km+1m+M+1=k+1k+M+1
13 eqid mm+1m+M+1=mm+1m+M+1
14 ovex k+1k+M+1V
15 12 13 14 fvmpt kmm+1m+M+1k=k+1k+M+1
16 15 adantl M0kmm+1m+M+1k=k+1k+M+1
17 2 3 4 6 9 16 divcnvlin M0mm+1m+M+11
18 5 nncnd M0M+1
19 7 mptex mM+1m+1m+M+1V
20 19 a1i M0mM+1m+1m+M+1V
21 peano2nn mm+1
22 21 adantl M0mm+1
23 22 nnred M0mm+1
24 simpr M0mm
25 5 adantr M0mM+1
26 24 25 nnaddcld M0mm+M+1
27 23 26 nndivred M0mm+1m+M+1
28 27 recnd M0mm+1m+M+1
29 28 fmpttd M0mm+1m+M+1:
30 29 ffvelcdmda M0kmm+1m+M+1k
31 12 oveq2d m=kM+1m+1m+M+1=M+1k+1k+M+1
32 eqid mM+1m+1m+M+1=mM+1m+1m+M+1
33 ovex M+1k+1k+M+1V
34 31 32 33 fvmpt kmM+1m+1m+M+1k=M+1k+1k+M+1
35 15 oveq2d kM+1mm+1m+M+1k=M+1k+1k+M+1
36 34 35 eqtr4d kmM+1m+1m+M+1k=M+1mm+1m+M+1k
37 36 adantl M0kmM+1m+1m+M+1k=M+1mm+1m+M+1k
38 2 3 17 18 20 30 37 climmulc2 M0mM+1m+1m+M+1M+11
39 18 mulridd M0M+11=M+1
40 38 39 breqtrd M0mM+1m+1m+M+1M+1
41 1 40 eqbrtrd M0seq1×n1+Mn1+1n1+M+1nM+1