Description: Lemma for faclim . Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | faclimlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faclimlem1 | |
|
2 | nnuz | |
|
3 | 1zzd | |
|
4 | 1cnd | |
|
5 | nn0p1nn | |
|
6 | 5 | nnzd | |
7 | nnex | |
|
8 | 7 | mptex | |
9 | 8 | a1i | |
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | oveq12d | |
13 | eqid | |
|
14 | ovex | |
|
15 | 12 13 14 | fvmpt | |
16 | 15 | adantl | |
17 | 2 3 4 6 9 16 | divcnvlin | |
18 | 5 | nncnd | |
19 | 7 | mptex | |
20 | 19 | a1i | |
21 | peano2nn | |
|
22 | 21 | adantl | |
23 | 22 | nnred | |
24 | simpr | |
|
25 | 5 | adantr | |
26 | 24 25 | nnaddcld | |
27 | 23 26 | nndivred | |
28 | 27 | recnd | |
29 | 28 | fmpttd | |
30 | 29 | ffvelcdmda | |
31 | 12 | oveq2d | |
32 | eqid | |
|
33 | ovex | |
|
34 | 31 32 33 | fvmpt | |
35 | 15 | oveq2d | |
36 | 34 35 | eqtr4d | |
37 | 36 | adantl | |
38 | 2 3 17 18 20 30 37 | climmulc2 | |
39 | 18 | mulridd | |
40 | 38 39 | breqtrd | |
41 | 1 40 | eqbrtrd | |