Metamath Proof Explorer


Theorem faclim

Description: An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017)

Ref Expression
Hypothesis faclim.1 F=n1+1nA1+An
Assertion faclim A0seq1×FA!

Proof

Step Hyp Ref Expression
1 faclim.1 F=n1+1nA1+An
2 seqeq3 F=n1+1nA1+Anseq1×F=seq1×n1+1nA1+An
3 1 2 ax-mp seq1×F=seq1×n1+1nA1+An
4 oveq2 a=01+1na=1+1n0
5 oveq1 a=0an=0n
6 5 oveq2d a=01+an=1+0n
7 4 6 oveq12d a=01+1na1+an=1+1n01+0n
8 7 mpteq2dv a=0n1+1na1+an=n1+1n01+0n
9 8 seqeq3d a=0seq1×n1+1na1+an=seq1×n1+1n01+0n
10 fveq2 a=0a!=0!
11 fac0 0!=1
12 10 11 eqtrdi a=0a!=1
13 9 12 breq12d a=0seq1×n1+1na1+ana!seq1×n1+1n01+0n1
14 oveq2 a=m1+1na=1+1nm
15 oveq1 a=man=mn
16 15 oveq2d a=m1+an=1+mn
17 14 16 oveq12d a=m1+1na1+an=1+1nm1+mn
18 17 mpteq2dv a=mn1+1na1+an=n1+1nm1+mn
19 18 seqeq3d a=mseq1×n1+1na1+an=seq1×n1+1nm1+mn
20 fveq2 a=ma!=m!
21 19 20 breq12d a=mseq1×n1+1na1+ana!seq1×n1+1nm1+mnm!
22 oveq2 a=m+11+1na=1+1nm+1
23 oveq1 a=m+1an=m+1n
24 23 oveq2d a=m+11+an=1+m+1n
25 22 24 oveq12d a=m+11+1na1+an=1+1nm+11+m+1n
26 25 mpteq2dv a=m+1n1+1na1+an=n1+1nm+11+m+1n
27 26 seqeq3d a=m+1seq1×n1+1na1+an=seq1×n1+1nm+11+m+1n
28 fveq2 a=m+1a!=m+1!
29 27 28 breq12d a=m+1seq1×n1+1na1+ana!seq1×n1+1nm+11+m+1nm+1!
30 oveq2 a=A1+1na=1+1nA
31 oveq1 a=Aan=An
32 31 oveq2d a=A1+an=1+An
33 30 32 oveq12d a=A1+1na1+an=1+1nA1+An
34 33 mpteq2dv a=An1+1na1+an=n1+1nA1+An
35 34 seqeq3d a=Aseq1×n1+1na1+an=seq1×n1+1nA1+An
36 fveq2 a=Aa!=A!
37 35 36 breq12d a=Aseq1×n1+1na1+ana!seq1×n1+1nA1+AnA!
38 1red n1
39 nnrecre n1n
40 38 39 readdcld n1+1n
41 40 recnd n1+1n
42 41 exp0d n1+1n0=1
43 nncn nn
44 nnne0 nn0
45 43 44 div0d n0n=0
46 45 oveq2d n1+0n=1+0
47 1p0e1 1+0=1
48 46 47 eqtrdi n1+0n=1
49 42 48 oveq12d n1+1n01+0n=11
50 1div1e1 11=1
51 49 50 eqtrdi n1+1n01+0n=1
52 51 mpteq2ia n1+1n01+0n=n1
53 fconstmpt ×1=n1
54 52 53 eqtr4i n1+1n01+0n=×1
55 seqeq3 n1+1n01+0n=×1seq1×n1+1n01+0n=seq1××1
56 54 55 ax-mp seq1×n1+1n01+0n=seq1××1
57 nnuz =1
58 1zzd 1
59 57 58 climprod1 seq1××11
60 59 mptru seq1××11
61 56 60 eqbrtri seq1×n1+1n01+0n1
62 1zzd m0seq1×n1+1nm1+mnm!1
63 simpr m0seq1×n1+1nm1+mnm!seq1×n1+1nm1+mnm!
64 seqex seq1×n1+1nm+11+m+1nV
65 64 a1i m0seq1×n1+1nm1+mnm!seq1×n1+1nm+11+m+1nV
66 faclimlem2 m0seq1×n1+mn1+1n1+m+1nm+1
67 66 adantr m0seq1×n1+1nm1+mnm!seq1×n1+mn1+1n1+m+1nm+1
68 elnnuz aa1
69 68 biimpi aa1
70 69 adantl m0aa1
71 1rp 1+
72 71 a1i m0n1+
73 nnrp nn+
74 73 rpreccld n1n+
75 74 adantl m0n1n+
76 72 75 rpaddcld m0n1+1n+
77 nn0z m0m
78 77 adantr m0nm
79 76 78 rpexpcld m0n1+1nm+
80 1cnd m0n1
81 nn0nndivcl m0nmn
82 81 recnd m0nmn
83 80 82 addcomd m0n1+mn=mn+1
84 nn0ge0div m0n0mn
85 81 84 ge0p1rpd m0nmn+1+
86 83 85 eqeltrd m0n1+mn+
87 79 86 rpdivcld m0n1+1nm1+mn+
88 87 rpcnd m0n1+1nm1+mn
89 88 fmpttd m0n1+1nm1+mn:
90 elfznn b1ab
91 ffvelcdm n1+1nm1+mn:bn1+1nm1+mnb
92 89 90 91 syl2an m0b1an1+1nm1+mnb
93 92 adantlr m0ab1an1+1nm1+mnb
94 mulcl bxbx
95 94 adantl m0abxbx
96 70 93 95 seqcl m0aseq1×n1+1nm1+mna
97 96 adantlr m0seq1×n1+1nm1+mnm!aseq1×n1+1nm1+mna
98 86 76 rpmulcld m0n1+mn1+1n+
99 nn0p1nn m0m+1
100 99 nnrpd m0m+1+
101 rpdivcl m+1+n+m+1n+
102 100 73 101 syl2an m0nm+1n+
103 72 102 rpaddcld m0n1+m+1n+
104 98 103 rpdivcld m0n1+mn1+1n1+m+1n+
105 104 rpcnd m0n1+mn1+1n1+m+1n
106 105 fmpttd m0n1+mn1+1n1+m+1n:
107 ffvelcdm n1+mn1+1n1+m+1n:bn1+mn1+1n1+m+1nb
108 106 90 107 syl2an m0b1an1+mn1+1n1+m+1nb
109 108 adantlr m0ab1an1+mn1+1n1+m+1nb
110 70 109 95 seqcl m0aseq1×n1+mn1+1n1+m+1na
111 110 adantlr m0seq1×n1+1nm1+mnm!aseq1×n1+mn1+1n1+m+1na
112 faclimlem3 m0b1+1bm+11+m+1b=1+1bm1+mb1+mb1+1b1+m+1b
113 oveq2 n=b1n=1b
114 113 oveq2d n=b1+1n=1+1b
115 114 oveq1d n=b1+1nm+1=1+1bm+1
116 oveq2 n=bm+1n=m+1b
117 116 oveq2d n=b1+m+1n=1+m+1b
118 115 117 oveq12d n=b1+1nm+11+m+1n=1+1bm+11+m+1b
119 eqid n1+1nm+11+m+1n=n1+1nm+11+m+1n
120 ovex 1+1bm+11+m+1bV
121 118 119 120 fvmpt bn1+1nm+11+m+1nb=1+1bm+11+m+1b
122 121 adantl m0bn1+1nm+11+m+1nb=1+1bm+11+m+1b
123 114 oveq1d n=b1+1nm=1+1bm
124 oveq2 n=bmn=mb
125 124 oveq2d n=b1+mn=1+mb
126 123 125 oveq12d n=b1+1nm1+mn=1+1bm1+mb
127 eqid n1+1nm1+mn=n1+1nm1+mn
128 ovex 1+1bm1+mbV
129 126 127 128 fvmpt bn1+1nm1+mnb=1+1bm1+mb
130 125 114 oveq12d n=b1+mn1+1n=1+mb1+1b
131 130 117 oveq12d n=b1+mn1+1n1+m+1n=1+mb1+1b1+m+1b
132 eqid n1+mn1+1n1+m+1n=n1+mn1+1n1+m+1n
133 ovex 1+mb1+1b1+m+1bV
134 131 132 133 fvmpt bn1+mn1+1n1+m+1nb=1+mb1+1b1+m+1b
135 129 134 oveq12d bn1+1nm1+mnbn1+mn1+1n1+m+1nb=1+1bm1+mb1+mb1+1b1+m+1b
136 135 adantl m0bn1+1nm1+mnbn1+mn1+1n1+m+1nb=1+1bm1+mb1+mb1+1b1+m+1b
137 112 122 136 3eqtr4d m0bn1+1nm+11+m+1nb=n1+1nm1+mnbn1+mn1+1n1+m+1nb
138 90 137 sylan2 m0b1an1+1nm+11+m+1nb=n1+1nm1+mnbn1+mn1+1n1+m+1nb
139 138 adantlr m0ab1an1+1nm+11+m+1nb=n1+1nm1+mnbn1+mn1+1n1+m+1nb
140 70 93 109 139 prodfmul m0aseq1×n1+1nm+11+m+1na=seq1×n1+1nm1+mnaseq1×n1+mn1+1n1+m+1na
141 140 adantlr m0seq1×n1+1nm1+mnm!aseq1×n1+1nm+11+m+1na=seq1×n1+1nm1+mnaseq1×n1+mn1+1n1+m+1na
142 57 62 63 65 67 97 111 141 climmul m0seq1×n1+1nm1+mnm!seq1×n1+1nm+11+m+1nm!m+1
143 facp1 m0m+1!=m!m+1
144 143 adantr m0seq1×n1+1nm1+mnm!m+1!=m!m+1
145 142 144 breqtrrd m0seq1×n1+1nm1+mnm!seq1×n1+1nm+11+m+1nm+1!
146 145 ex m0seq1×n1+1nm1+mnm!seq1×n1+1nm+11+m+1nm+1!
147 13 21 29 37 61 146 nn0ind A0seq1×n1+1nA1+AnA!
148 3 147 eqbrtrid A0seq1×FA!