| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnuz |  | 
						
							| 2 |  | 1zzd |  | 
						
							| 3 |  | facne0 |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | faclim |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 6 | oveq2d |  | 
						
							| 8 | 7 | oveq1d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | oveq2d |  | 
						
							| 11 | 8 10 | oveq12d |  | 
						
							| 12 |  | ovex |  | 
						
							| 13 | 11 4 12 | fvmpt |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | 1rp |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 17 | nnrpd |  | 
						
							| 19 | 18 | rpreccld |  | 
						
							| 20 | 16 19 | rpaddcld |  | 
						
							| 21 |  | nn0z |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 20 22 | rpexpcld |  | 
						
							| 24 |  | 1cnd |  | 
						
							| 25 |  | nn0nndivcl |  | 
						
							| 26 | 25 | recnd |  | 
						
							| 27 | 24 26 | addcomd |  | 
						
							| 28 |  | nn0ge0div |  | 
						
							| 29 | 25 28 | ge0p1rpd |  | 
						
							| 30 | 27 29 | eqeltrd |  | 
						
							| 31 | 23 30 | rpdivcld |  | 
						
							| 32 | 31 | rpcnd |  | 
						
							| 33 | 1 2 3 5 14 32 | iprodn0 |  | 
						
							| 34 | 33 | eqcomd |  |