| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 2 |
|
1zzd |
|- ( A e. NN0 -> 1 e. ZZ ) |
| 3 |
|
facne0 |
|- ( A e. NN0 -> ( ! ` A ) =/= 0 ) |
| 4 |
|
eqid |
|- ( x e. NN |-> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) ) = ( x e. NN |-> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) ) |
| 5 |
4
|
faclim |
|- ( A e. NN0 -> seq 1 ( x. , ( x e. NN |-> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) ) ) ~~> ( ! ` A ) ) |
| 6 |
|
oveq2 |
|- ( x = k -> ( 1 / x ) = ( 1 / k ) ) |
| 7 |
6
|
oveq2d |
|- ( x = k -> ( 1 + ( 1 / x ) ) = ( 1 + ( 1 / k ) ) ) |
| 8 |
7
|
oveq1d |
|- ( x = k -> ( ( 1 + ( 1 / x ) ) ^ A ) = ( ( 1 + ( 1 / k ) ) ^ A ) ) |
| 9 |
|
oveq2 |
|- ( x = k -> ( A / x ) = ( A / k ) ) |
| 10 |
9
|
oveq2d |
|- ( x = k -> ( 1 + ( A / x ) ) = ( 1 + ( A / k ) ) ) |
| 11 |
8 10
|
oveq12d |
|- ( x = k -> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) = ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) ) |
| 12 |
|
ovex |
|- ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) e. _V |
| 13 |
11 4 12
|
fvmpt |
|- ( k e. NN -> ( ( x e. NN |-> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) ) ` k ) = ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) ) |
| 14 |
13
|
adantl |
|- ( ( A e. NN0 /\ k e. NN ) -> ( ( x e. NN |-> ( ( ( 1 + ( 1 / x ) ) ^ A ) / ( 1 + ( A / x ) ) ) ) ` k ) = ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) ) |
| 15 |
|
1rp |
|- 1 e. RR+ |
| 16 |
15
|
a1i |
|- ( ( A e. NN0 /\ k e. NN ) -> 1 e. RR+ ) |
| 17 |
|
simpr |
|- ( ( A e. NN0 /\ k e. NN ) -> k e. NN ) |
| 18 |
17
|
nnrpd |
|- ( ( A e. NN0 /\ k e. NN ) -> k e. RR+ ) |
| 19 |
18
|
rpreccld |
|- ( ( A e. NN0 /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 20 |
16 19
|
rpaddcld |
|- ( ( A e. NN0 /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
| 21 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 22 |
21
|
adantr |
|- ( ( A e. NN0 /\ k e. NN ) -> A e. ZZ ) |
| 23 |
20 22
|
rpexpcld |
|- ( ( A e. NN0 /\ k e. NN ) -> ( ( 1 + ( 1 / k ) ) ^ A ) e. RR+ ) |
| 24 |
|
1cnd |
|- ( ( A e. NN0 /\ k e. NN ) -> 1 e. CC ) |
| 25 |
|
nn0nndivcl |
|- ( ( A e. NN0 /\ k e. NN ) -> ( A / k ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( A e. NN0 /\ k e. NN ) -> ( A / k ) e. CC ) |
| 27 |
24 26
|
addcomd |
|- ( ( A e. NN0 /\ k e. NN ) -> ( 1 + ( A / k ) ) = ( ( A / k ) + 1 ) ) |
| 28 |
|
nn0ge0div |
|- ( ( A e. NN0 /\ k e. NN ) -> 0 <_ ( A / k ) ) |
| 29 |
25 28
|
ge0p1rpd |
|- ( ( A e. NN0 /\ k e. NN ) -> ( ( A / k ) + 1 ) e. RR+ ) |
| 30 |
27 29
|
eqeltrd |
|- ( ( A e. NN0 /\ k e. NN ) -> ( 1 + ( A / k ) ) e. RR+ ) |
| 31 |
23 30
|
rpdivcld |
|- ( ( A e. NN0 /\ k e. NN ) -> ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) e. RR+ ) |
| 32 |
31
|
rpcnd |
|- ( ( A e. NN0 /\ k e. NN ) -> ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) e. CC ) |
| 33 |
1 2 3 5 14 32
|
iprodn0 |
|- ( A e. NN0 -> prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) = ( ! ` A ) ) |
| 34 |
33
|
eqcomd |
|- ( A e. NN0 -> ( ! ` A ) = prod_ k e. NN ( ( ( 1 + ( 1 / k ) ) ^ A ) / ( 1 + ( A / k ) ) ) ) |