| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 2 |
|
1zzd |
⊢ ( 𝐴 ∈ ℕ0 → 1 ∈ ℤ ) |
| 3 |
|
facne0 |
⊢ ( 𝐴 ∈ ℕ0 → ( ! ‘ 𝐴 ) ≠ 0 ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) ) |
| 5 |
4
|
faclim |
⊢ ( 𝐴 ∈ ℕ0 → seq 1 ( · , ( 𝑥 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) ) ) ⇝ ( ! ‘ 𝐴 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 1 / 𝑥 ) = ( 1 / 𝑘 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( 1 + ( 1 / 𝑥 ) ) = ( 1 + ( 1 / 𝑘 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) = ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑘 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( 1 + ( 𝐴 / 𝑥 ) ) = ( 1 + ( 𝐴 / 𝑘 ) ) ) |
| 11 |
8 10
|
oveq12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) = ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ) |
| 12 |
|
ovex |
⊢ ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ∈ V |
| 13 |
11 4 12
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) ) ‘ 𝑘 ) = ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( ( ( 1 + ( 1 / 𝑥 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑥 ) ) ) ) ‘ 𝑘 ) = ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ) |
| 15 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 16 |
15
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ+ ) |
| 17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 18 |
17
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 19 |
18
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 20 |
16 19
|
rpaddcld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 1 / 𝑘 ) ) ∈ ℝ+ ) |
| 21 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 23 |
20 22
|
rpexpcld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) ∈ ℝ+ ) |
| 24 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
| 25 |
|
nn0nndivcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 / 𝑘 ) ∈ ℝ ) |
| 26 |
25
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 / 𝑘 ) ∈ ℂ ) |
| 27 |
24 26
|
addcomd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 𝐴 / 𝑘 ) ) = ( ( 𝐴 / 𝑘 ) + 1 ) ) |
| 28 |
|
nn0ge0div |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐴 / 𝑘 ) ) |
| 29 |
25 28
|
ge0p1rpd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 / 𝑘 ) + 1 ) ∈ ℝ+ ) |
| 30 |
27 29
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 𝐴 / 𝑘 ) ) ∈ ℝ+ ) |
| 31 |
23 30
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ∈ ℝ+ ) |
| 32 |
31
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ∈ ℂ ) |
| 33 |
1 2 3 5 14 32
|
iprodn0 |
⊢ ( 𝐴 ∈ ℕ0 → ∏ 𝑘 ∈ ℕ ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) = ( ! ‘ 𝐴 ) ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝐴 ∈ ℕ0 → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ℕ ( ( ( 1 + ( 1 / 𝑘 ) ) ↑ 𝐴 ) / ( 1 + ( 𝐴 / 𝑘 ) ) ) ) |