| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 2 |  | 1zzd | ⊢ ( 𝐴  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 3 |  | facne0 | ⊢ ( 𝐴  ∈  ℕ0  →  ( ! ‘ 𝐴 )  ≠  0 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑥  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) ) ) | 
						
							| 5 | 4 | faclim | ⊢ ( 𝐴  ∈  ℕ0  →  seq 1 (  ·  ,  ( 𝑥  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) ) ) )  ⇝  ( ! ‘ 𝐴 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 1  /  𝑥 )  =  ( 1  /  𝑘 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 1  +  ( 1  /  𝑥 ) )  =  ( 1  +  ( 1  /  𝑘 ) ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  =  ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐴  /  𝑥 )  =  ( 𝐴  /  𝑘 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 1  +  ( 𝐴  /  𝑥 ) )  =  ( 1  +  ( 𝐴  /  𝑘 ) ) ) | 
						
							| 11 | 8 10 | oveq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) )  =  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 12 |  | ovex | ⊢ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  ∈  V | 
						
							| 13 | 11 4 12 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑥  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑥  ∈  ℕ  ↦  ( ( ( 1  +  ( 1  /  𝑥 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑥 ) ) ) ) ‘ 𝑘 )  =  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) | 
						
							| 15 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℝ+ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 18 | 17 | nnrpd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ+ ) | 
						
							| 19 | 18 | rpreccld | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 20 | 16 19 | rpaddcld | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 1  /  𝑘 ) )  ∈  ℝ+ ) | 
						
							| 21 |  | nn0z | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℤ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 23 | 20 22 | rpexpcld | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  ∈  ℝ+ ) | 
						
							| 24 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 25 |  | nn0nndivcl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  /  𝑘 )  ∈  ℝ ) | 
						
							| 26 | 25 | recnd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  /  𝑘 )  ∈  ℂ ) | 
						
							| 27 | 24 26 | addcomd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 𝐴  /  𝑘 ) )  =  ( ( 𝐴  /  𝑘 )  +  1 ) ) | 
						
							| 28 |  | nn0ge0div | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 𝐴  /  𝑘 ) ) | 
						
							| 29 | 25 28 | ge0p1rpd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  /  𝑘 )  +  1 )  ∈  ℝ+ ) | 
						
							| 30 | 27 29 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 1  +  ( 𝐴  /  𝑘 ) )  ∈  ℝ+ ) | 
						
							| 31 | 23 30 | rpdivcld | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  ∈  ℝ+ ) | 
						
							| 32 | 31 | rpcnd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 33 | 1 2 3 5 14 32 | iprodn0 | ⊢ ( 𝐴  ∈  ℕ0  →  ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) )  =  ( ! ‘ 𝐴 ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( 𝐴  ∈  ℕ0  →  ( ! ‘ 𝐴 )  =  ∏ 𝑘  ∈  ℕ ( ( ( 1  +  ( 1  /  𝑘 ) ) ↑ 𝐴 )  /  ( 1  +  ( 𝐴  /  𝑘 ) ) ) ) |