Step |
Hyp |
Ref |
Expression |
1 |
|
faclim2.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) |
2 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 0 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑎 = 0 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 0 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑎 = 0 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 0 ) ) ) |
6 |
3 5
|
oveq12d |
⊢ ( 𝑎 = 0 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) |
7 |
6
|
mpteq2dv |
⊢ ( 𝑎 = 0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ) |
8 |
7
|
breq1d |
⊢ ( 𝑎 = 0 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑎 = 𝑚 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 𝑚 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑎 = 𝑚 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 𝑚 ) ) ) |
13 |
10 12
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 + 𝑎 ) = ( 𝑛 + ( 𝑚 + 1 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) |
20 |
17 19
|
oveq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) |
21 |
20
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ) |
22 |
21
|
breq1d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑎 = 𝑀 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 𝑀 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑎 = 𝑀 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 𝑀 ) ) ) |
27 |
24 26
|
oveq12d |
⊢ ( 𝑎 = 𝑀 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑎 = 𝑀 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ⇝ 1 ) ) |
30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
31 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
32 |
|
nnex |
⊢ ℕ ∈ V |
33 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ∈ V |
34 |
33
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ∈ V ) |
35 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
36 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) |
37 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 + 1 ) = ( 𝑚 + 1 ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 + 1 ) ↑ 0 ) = ( ( 𝑚 + 1 ) ↑ 0 ) ) |
39 |
36 38
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) = ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) ) |
40 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ ( 𝑛 + 0 ) ) = ( ! ‘ ( 𝑚 + 0 ) ) ) |
41 |
39 40
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) = ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ) |
42 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) |
43 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ∈ V |
44 |
41 42 43
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ) |
45 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
46 |
45
|
nncnd |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℂ ) |
47 |
46
|
exp0d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) ↑ 0 ) = 1 ) |
48 |
47
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) = ( ( ! ‘ 𝑚 ) · 1 ) ) |
49 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
50 |
|
faccl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ 𝑚 ) ∈ ℕ ) |
51 |
49 50
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ∈ ℕ ) |
52 |
51
|
nncnd |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ∈ ℂ ) |
53 |
52
|
mulid1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · 1 ) = ( ! ‘ 𝑚 ) ) |
54 |
48 53
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) = ( ! ‘ 𝑚 ) ) |
55 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
56 |
55
|
addid1d |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 0 ) = 𝑚 ) |
57 |
56
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ ( 𝑚 + 0 ) ) = ( ! ‘ 𝑚 ) ) |
58 |
54 57
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) = ( ( ! ‘ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) |
59 |
51
|
nnne0d |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ≠ 0 ) |
60 |
52 59
|
dividd |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) / ( ! ‘ 𝑚 ) ) = 1 ) |
61 |
44 58 60
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = 1 ) |
62 |
61
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = 1 ) |
63 |
30 31 34 35 62
|
climconst |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 ) |
64 |
63
|
mptru |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 |
65 |
|
1zzd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → 1 ∈ ℤ ) |
66 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) |
67 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ∈ V |
68 |
67
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ∈ V ) |
69 |
|
1zzd |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℤ ) |
70 |
|
1cnd |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℂ ) |
71 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
72 |
71
|
nnzd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℤ ) |
73 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ∈ V |
74 |
73
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ∈ V ) |
75 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) |
76 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + ( 𝑚 + 1 ) ) = ( 𝑘 + ( 𝑚 + 1 ) ) ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
78 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) |
79 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ∈ V |
80 |
77 78 79
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
81 |
80
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
82 |
30 69 70 72 74 81
|
divcnvlin |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ⇝ 1 ) |
83 |
82
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ⇝ 1 ) |
84 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
85 |
84
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
86 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
87 |
85 86
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ 𝑛 ) ∈ ℕ ) |
88 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
89 |
|
nnexpcl |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
90 |
88 89
|
sylan |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
91 |
90
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
92 |
87 91
|
nnmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ∈ ℕ ) |
93 |
92
|
nnred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ∈ ℝ ) |
94 |
|
nnnn0addcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑛 + 𝑚 ) ∈ ℕ ) |
95 |
94
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 𝑚 ) ∈ ℕ ) |
96 |
95
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 𝑚 ) ∈ ℕ0 ) |
97 |
|
faccl |
⊢ ( ( 𝑛 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( 𝑛 + 𝑚 ) ) ∈ ℕ ) |
98 |
96 97
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ ( 𝑛 + 𝑚 ) ) ∈ ℕ ) |
99 |
93 98
|
nndivred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ∈ ℝ ) |
100 |
99
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ∈ ℂ ) |
101 |
100
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) : ℕ ⟶ ℂ ) |
102 |
101
|
ffvelrnda |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
103 |
102
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
104 |
88
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
105 |
104
|
nnred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
106 |
71
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
107 |
84 106
|
nnaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + ( 𝑚 + 1 ) ) ∈ ℕ ) |
108 |
105 107
|
nndivred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
109 |
108
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ∈ ℂ ) |
110 |
109
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) : ℕ ⟶ ℂ ) |
111 |
110
|
ffvelrnda |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
112 |
111
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
113 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
114 |
113
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
115 |
114
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
116 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
117 |
115 116
|
expp1d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) |
118 |
117
|
oveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) ) |
119 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
120 |
119
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
121 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
122 |
120 121
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
123 |
122
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
124 |
|
nnexpcl |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
125 |
113 124
|
sylan |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
126 |
125
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
127 |
126
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℂ ) |
128 |
123 127 115
|
mulassd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) ) |
129 |
118 128
|
eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) ) |
130 |
120 116
|
nn0addcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 𝑚 ) ∈ ℕ0 ) |
131 |
|
facp1 |
⊢ ( ( 𝑘 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) ) |
132 |
130 131
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) ) |
133 |
119
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
134 |
116
|
nn0cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
135 |
|
1cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
136 |
133 134 135
|
addassd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 𝑚 ) + 1 ) = ( 𝑘 + ( 𝑚 + 1 ) ) ) |
137 |
136
|
fveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
138 |
136
|
oveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
139 |
132 137 138
|
3eqtr3d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
140 |
129 139
|
oveq12d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) / ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
141 |
122 126
|
nnmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ∈ ℕ ) |
142 |
141
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ∈ ℂ ) |
143 |
|
faccl |
⊢ ( ( 𝑘 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℕ ) |
144 |
130 143
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℕ ) |
145 |
144
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℂ ) |
146 |
71
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
147 |
119 146
|
nnaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ∈ ℕ ) |
148 |
147
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ∈ ℂ ) |
149 |
144
|
nnne0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ≠ 0 ) |
150 |
147
|
nnne0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ≠ 0 ) |
151 |
142 145 115 148 149 150
|
divmuldivd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) / ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
152 |
140 151
|
eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
153 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
154 |
75
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) = ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) |
155 |
153 154
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) ) |
156 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) = ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
157 |
155 156
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
158 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) |
159 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ∈ V |
160 |
157 158 159
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
161 |
160
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
162 |
75
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) ↑ 𝑚 ) = ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) |
163 |
153 162
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) = ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ) |
164 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ ( 𝑛 + 𝑚 ) ) = ( ! ‘ ( 𝑘 + 𝑚 ) ) ) |
165 |
163 164
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ) |
166 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) |
167 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ∈ V |
168 |
165 166 167
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ) |
169 |
168 80
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
170 |
169
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
171 |
152 161 170
|
3eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
172 |
171
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
173 |
30 65 66 68 83 103 112 172
|
climmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ ( 1 · 1 ) ) |
174 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
175 |
173 174
|
breqtrdi |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) |
176 |
175
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) ) |
177 |
8 15 22 29 64 176
|
nn0ind |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ⇝ 1 ) |
178 |
1 177
|
eqbrtrid |
⊢ ( 𝑀 ∈ ℕ0 → 𝐹 ⇝ 1 ) |