| Step |
Hyp |
Ref |
Expression |
| 1 |
|
faclim2.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 0 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑎 = 0 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 0 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑎 = 0 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 0 ) ) ) |
| 6 |
3 5
|
oveq12d |
⊢ ( 𝑎 = 0 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑎 = 0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ) |
| 8 |
7
|
breq1d |
⊢ ( 𝑎 = 0 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑎 = 𝑚 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 𝑚 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑎 = 𝑚 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 𝑚 ) ) ) |
| 13 |
10 12
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑎 = 𝑚 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ) |
| 15 |
14
|
breq1d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 + 𝑎 ) = ( 𝑛 + ( 𝑚 + 1 ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) |
| 20 |
17 19
|
oveq12d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) |
| 21 |
20
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ) |
| 22 |
21
|
breq1d |
⊢ ( 𝑎 = ( 𝑚 + 1 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑛 + 1 ) ↑ 𝑎 ) = ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑎 = 𝑀 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) = ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑛 + 𝑎 ) = ( 𝑛 + 𝑀 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑎 = 𝑀 → ( ! ‘ ( 𝑛 + 𝑎 ) ) = ( ! ‘ ( 𝑛 + 𝑀 ) ) ) |
| 27 |
24 26
|
oveq12d |
⊢ ( 𝑎 = 𝑀 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) = ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) |
| 28 |
27
|
mpteq2dv |
⊢ ( 𝑎 = 𝑀 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ) |
| 29 |
28
|
breq1d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑎 ) ) / ( ! ‘ ( 𝑛 + 𝑎 ) ) ) ) ⇝ 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ⇝ 1 ) ) |
| 30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 31 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 32 |
|
nnex |
⊢ ℕ ∈ V |
| 33 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ∈ V |
| 34 |
33
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ∈ V ) |
| 35 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 36 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 + 1 ) = ( 𝑚 + 1 ) ) |
| 38 |
37
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 + 1 ) ↑ 0 ) = ( ( 𝑚 + 1 ) ↑ 0 ) ) |
| 39 |
36 38
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) = ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) ) |
| 40 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ ( 𝑛 + 0 ) ) = ( ! ‘ ( 𝑚 + 0 ) ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) = ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ) |
| 42 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) |
| 43 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ∈ V |
| 44 |
41 42 43
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) ) |
| 45 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
| 46 |
45
|
nncnd |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℂ ) |
| 47 |
46
|
exp0d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑚 + 1 ) ↑ 0 ) = 1 ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) = ( ( ! ‘ 𝑚 ) · 1 ) ) |
| 49 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
| 50 |
|
faccl |
⊢ ( 𝑚 ∈ ℕ0 → ( ! ‘ 𝑚 ) ∈ ℕ ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ∈ ℕ ) |
| 52 |
51
|
nncnd |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ∈ ℂ ) |
| 53 |
52
|
mulridd |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · 1 ) = ( ! ‘ 𝑚 ) ) |
| 54 |
48 53
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) = ( ! ‘ 𝑚 ) ) |
| 55 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 56 |
55
|
addridd |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 0 ) = 𝑚 ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ ( 𝑚 + 0 ) ) = ( ! ‘ 𝑚 ) ) |
| 58 |
54 57
|
oveq12d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( ! ‘ 𝑚 ) · ( ( 𝑚 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑚 + 0 ) ) ) = ( ( ! ‘ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) |
| 59 |
51
|
nnne0d |
⊢ ( 𝑚 ∈ ℕ → ( ! ‘ 𝑚 ) ≠ 0 ) |
| 60 |
52 59
|
dividd |
⊢ ( 𝑚 ∈ ℕ → ( ( ! ‘ 𝑚 ) / ( ! ‘ 𝑚 ) ) = 1 ) |
| 61 |
44 58 60
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = 1 ) |
| 62 |
61
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ‘ 𝑚 ) = 1 ) |
| 63 |
30 31 34 35 62
|
climconst |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 ) |
| 64 |
63
|
mptru |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 0 ) ) / ( ! ‘ ( 𝑛 + 0 ) ) ) ) ⇝ 1 |
| 65 |
|
1zzd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → 1 ∈ ℤ ) |
| 66 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) |
| 67 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ∈ V |
| 68 |
67
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ∈ V ) |
| 69 |
|
1zzd |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℤ ) |
| 70 |
|
1cnd |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℂ ) |
| 71 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
| 72 |
71
|
nnzd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℤ ) |
| 73 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ∈ V |
| 74 |
73
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ∈ V ) |
| 75 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) |
| 76 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 + ( 𝑚 + 1 ) ) = ( 𝑘 + ( 𝑚 + 1 ) ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 78 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) |
| 79 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ∈ V |
| 80 |
77 78 79
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 82 |
30 69 70 72 74 81
|
divcnvlin |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ⇝ 1 ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ⇝ 1 ) |
| 84 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 85 |
84
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 86 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 88 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 89 |
|
nnexpcl |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 90 |
88 89
|
sylan |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 91 |
90
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 92 |
87 91
|
nnmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ∈ ℕ ) |
| 93 |
92
|
nnred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) ∈ ℝ ) |
| 94 |
|
nnnn0addcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑛 + 𝑚 ) ∈ ℕ ) |
| 95 |
94
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 𝑚 ) ∈ ℕ ) |
| 96 |
95
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 𝑚 ) ∈ ℕ0 ) |
| 97 |
|
faccl |
⊢ ( ( 𝑛 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( 𝑛 + 𝑚 ) ) ∈ ℕ ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ ( 𝑛 + 𝑚 ) ) ∈ ℕ ) |
| 99 |
93 98
|
nndivred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ∈ ℝ ) |
| 100 |
99
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ∈ ℂ ) |
| 101 |
100
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) : ℕ ⟶ ℂ ) |
| 102 |
101
|
ffvelcdmda |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 103 |
102
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 104 |
88
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 105 |
104
|
nnred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 106 |
71
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 107 |
84 106
|
nnaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + ( 𝑚 + 1 ) ) ∈ ℕ ) |
| 108 |
105 107
|
nndivred |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
| 109 |
108
|
recnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ∈ ℂ ) |
| 110 |
109
|
fmpttd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) : ℕ ⟶ ℂ ) |
| 111 |
110
|
ffvelcdmda |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 112 |
111
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 113 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 115 |
114
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 116 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
| 117 |
115 116
|
expp1d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) |
| 118 |
117
|
oveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) ) |
| 119 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 120 |
119
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 121 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 122 |
120 121
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 123 |
122
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 124 |
|
nnexpcl |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 125 |
113 124
|
sylan |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 126 |
125
|
ancoms |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℕ ) |
| 127 |
126
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑ 𝑚 ) ∈ ℂ ) |
| 128 |
123 127 115
|
mulassd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( ( ( 𝑘 + 1 ) ↑ 𝑚 ) · ( 𝑘 + 1 ) ) ) ) |
| 129 |
118 128
|
eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) ) |
| 130 |
120 116
|
nn0addcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 𝑚 ) ∈ ℕ0 ) |
| 131 |
|
facp1 |
⊢ ( ( 𝑘 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) ) |
| 132 |
130 131
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) ) |
| 133 |
119
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 134 |
116
|
nn0cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 135 |
|
1cnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
| 136 |
133 134 135
|
addassd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 𝑚 ) + 1 ) = ( 𝑘 + ( 𝑚 + 1 ) ) ) |
| 137 |
136
|
fveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 138 |
136
|
oveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( ( 𝑘 + 𝑚 ) + 1 ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 139 |
132 137 138
|
3eqtr3d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) = ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 140 |
129 139
|
oveq12d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) / ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 141 |
122 126
|
nnmulcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ∈ ℕ ) |
| 142 |
141
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ∈ ℂ ) |
| 143 |
|
faccl |
⊢ ( ( 𝑘 + 𝑚 ) ∈ ℕ0 → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℕ ) |
| 144 |
130 143
|
syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℕ ) |
| 145 |
144
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ∈ ℂ ) |
| 146 |
71
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 147 |
119 146
|
nnaddcld |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ∈ ℕ ) |
| 148 |
147
|
nncnd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 149 |
144
|
nnne0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ! ‘ ( 𝑘 + 𝑚 ) ) ≠ 0 ) |
| 150 |
147
|
nnne0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + ( 𝑚 + 1 ) ) ≠ 0 ) |
| 151 |
142 145 115 148 149 150
|
divmuldivd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) · ( 𝑘 + 1 ) ) / ( ( ! ‘ ( 𝑘 + 𝑚 ) ) · ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 152 |
140 151
|
eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 153 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 154 |
75
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) = ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) |
| 155 |
153 154
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) ) |
| 156 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) = ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) |
| 157 |
155 156
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 158 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) |
| 159 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ∈ V |
| 160 |
157 158 159
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 161 |
160
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 162 |
75
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 + 1 ) ↑ 𝑚 ) = ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) |
| 163 |
153 162
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) = ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) ) |
| 164 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ ( 𝑛 + 𝑚 ) ) = ( ! ‘ ( 𝑘 + 𝑚 ) ) ) |
| 165 |
163 164
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ) |
| 166 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) |
| 167 |
|
ovex |
⊢ ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ∈ V |
| 168 |
165 166 167
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) = ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) ) |
| 169 |
168 80
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 170 |
169
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( ( ( ! ‘ 𝑘 ) · ( ( 𝑘 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑘 + 𝑚 ) ) ) · ( ( 𝑘 + 1 ) / ( 𝑘 + ( 𝑚 + 1 ) ) ) ) ) |
| 171 |
152 161 170
|
3eqtr4d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 172 |
171
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 + 1 ) / ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 173 |
30 65 66 68 83 103 112 172
|
climmul |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ ( 1 · 1 ) ) |
| 174 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 175 |
173 174
|
breqtrdi |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) |
| 176 |
175
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑚 ) ) / ( ! ‘ ( 𝑛 + 𝑚 ) ) ) ) ⇝ 1 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ ( 𝑚 + 1 ) ) ) / ( ! ‘ ( 𝑛 + ( 𝑚 + 1 ) ) ) ) ) ⇝ 1 ) ) |
| 177 |
8 15 22 29 64 176
|
nn0ind |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑛 ∈ ℕ ↦ ( ( ( ! ‘ 𝑛 ) · ( ( 𝑛 + 1 ) ↑ 𝑀 ) ) / ( ! ‘ ( 𝑛 + 𝑀 ) ) ) ) ⇝ 1 ) |
| 178 |
1 177
|
eqbrtrid |
⊢ ( 𝑀 ∈ ℕ0 → 𝐹 ⇝ 1 ) |