| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclim2.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) )  /  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( ( 𝑛  +  1 ) ↑ 𝑎 )  =  ( ( 𝑛  +  1 ) ↑ 0 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑎  =  0  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  =  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( 𝑛  +  𝑎 )  =  ( 𝑛  +  0 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑎  =  0  →  ( ! ‘ ( 𝑛  +  𝑎 ) )  =  ( ! ‘ ( 𝑛  +  0 ) ) ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( 𝑎  =  0  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) )  =  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) | 
						
							| 7 | 6 | mpteq2dv | ⊢ ( 𝑎  =  0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) ) | 
						
							| 8 | 7 | breq1d | ⊢ ( 𝑎  =  0  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  ⇝  1  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  ⇝  1 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑎  =  𝑚  →  ( ( 𝑛  +  1 ) ↑ 𝑎 )  =  ( ( 𝑛  +  1 ) ↑ 𝑚 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑎  =  𝑚  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  =  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑎  =  𝑚  →  ( 𝑛  +  𝑎 )  =  ( 𝑛  +  𝑚 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑎  =  𝑚  →  ( ! ‘ ( 𝑛  +  𝑎 ) )  =  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) | 
						
							| 13 | 10 12 | oveq12d | ⊢ ( 𝑎  =  𝑚  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) )  =  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) | 
						
							| 14 | 13 | mpteq2dv | ⊢ ( 𝑎  =  𝑚  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑎  =  𝑚  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  ⇝  1  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( 𝑛  +  1 ) ↑ 𝑎 )  =  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  =  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( 𝑛  +  𝑎 )  =  ( 𝑛  +  ( 𝑚  +  1 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ! ‘ ( 𝑛  +  𝑎 ) )  =  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 20 | 17 19 | oveq12d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) )  =  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 21 | 20 | mpteq2dv | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) ) | 
						
							| 22 | 21 | breq1d | ⊢ ( 𝑎  =  ( 𝑚  +  1 )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  ⇝  1  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ⇝  1 ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑎  =  𝑀  →  ( ( 𝑛  +  1 ) ↑ 𝑎 )  =  ( ( 𝑛  +  1 ) ↑ 𝑀 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑎  =  𝑀  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  =  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑎  =  𝑀  →  ( 𝑛  +  𝑎 )  =  ( 𝑛  +  𝑀 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑎  =  𝑀  →  ( ! ‘ ( 𝑛  +  𝑎 ) )  =  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) | 
						
							| 27 | 24 26 | oveq12d | ⊢ ( 𝑎  =  𝑀  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) )  =  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) )  /  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) ) | 
						
							| 28 | 27 | mpteq2dv | ⊢ ( 𝑎  =  𝑀  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) )  /  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) ) ) | 
						
							| 29 | 28 | breq1d | ⊢ ( 𝑎  =  𝑀  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑎 ) )  /  ( ! ‘ ( 𝑛  +  𝑎 ) ) ) )  ⇝  1  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) )  /  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) )  ⇝  1 ) ) | 
						
							| 30 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 31 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 32 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 33 | 32 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  ∈  V ) | 
						
							| 35 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  +  1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑛  +  1 ) ↑ 0 )  =  ( ( 𝑚  +  1 ) ↑ 0 ) ) | 
						
							| 39 | 36 38 | oveq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  =  ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) ) ) | 
						
							| 40 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( ! ‘ ( 𝑛  +  0 ) )  =  ( ! ‘ ( 𝑚  +  0 ) ) ) | 
						
							| 41 | 39 40 | oveq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) )  =  ( ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑚  +  0 ) ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) | 
						
							| 43 |  | ovex | ⊢ ( ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑚  +  0 ) ) )  ∈  V | 
						
							| 44 | 41 42 43 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) ‘ 𝑚 )  =  ( ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑚  +  0 ) ) ) ) | 
						
							| 45 |  | peano2nn | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 46 | 45 | nncnd | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  1 )  ∈  ℂ ) | 
						
							| 47 | 46 | exp0d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑚  +  1 ) ↑ 0 )  =  1 ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  =  ( ( ! ‘ 𝑚 )  ·  1 ) ) | 
						
							| 49 |  | nnnn0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℕ0 ) | 
						
							| 50 |  | faccl | ⊢ ( 𝑚  ∈  ℕ0  →  ( ! ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑚  ∈  ℕ  →  ( ! ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 52 | 51 | nncnd | ⊢ ( 𝑚  ∈  ℕ  →  ( ! ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 53 | 52 | mulridd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ! ‘ 𝑚 )  ·  1 )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 54 | 48 53 | eqtrd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 55 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 56 | 55 | addridd | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝑚  +  0 )  =  𝑚 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ! ‘ ( 𝑚  +  0 ) )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 58 | 54 57 | oveq12d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( ! ‘ 𝑚 )  ·  ( ( 𝑚  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑚  +  0 ) ) )  =  ( ( ! ‘ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) | 
						
							| 59 | 51 | nnne0d | ⊢ ( 𝑚  ∈  ℕ  →  ( ! ‘ 𝑚 )  ≠  0 ) | 
						
							| 60 | 52 59 | dividd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ! ‘ 𝑚 )  /  ( ! ‘ 𝑚 ) )  =  1 ) | 
						
							| 61 | 44 58 60 | 3eqtrd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) ‘ 𝑚 )  =  1 ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ⊤  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) ) ‘ 𝑚 )  =  1 ) | 
						
							| 63 | 30 31 34 35 62 | climconst | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  ⇝  1 ) | 
						
							| 64 | 63 | mptru | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 0 ) )  /  ( ! ‘ ( 𝑛  +  0 ) ) ) )  ⇝  1 | 
						
							| 65 |  | 1zzd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  1  ∈  ℤ ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 ) | 
						
							| 67 | 32 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ∈  V | 
						
							| 68 | 67 | a1i | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ∈  V ) | 
						
							| 69 |  | 1zzd | ⊢ ( 𝑚  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 70 |  | 1cnd | ⊢ ( 𝑚  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 71 |  | nn0p1nn | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 72 | 71 | nnzd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℤ ) | 
						
							| 73 | 32 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  ∈  V | 
						
							| 74 | 73 | a1i | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  ∈  V ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 76 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  +  ( 𝑚  +  1 ) )  =  ( 𝑘  +  ( 𝑚  +  1 ) ) ) | 
						
							| 77 | 75 76 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 79 |  | ovex | ⊢ ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) )  ∈  V | 
						
							| 80 | 77 78 79 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 82 | 30 69 70 72 74 81 | divcnvlin | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  ⇝  1 ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  ⇝  1 ) | 
						
							| 84 |  | simpr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 85 | 84 | nnnn0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 86 |  | faccl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ! ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ! ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 88 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 89 |  | nnexpcl | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 90 | 88 89 | sylan | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 91 | 90 | ancoms | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 92 | 87 91 | nnmulcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  ∈  ℕ ) | 
						
							| 93 | 92 | nnred | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  ∈  ℝ ) | 
						
							| 94 |  | nnnn0addcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑛  +  𝑚 )  ∈  ℕ ) | 
						
							| 95 | 94 | ancoms | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  𝑚 )  ∈  ℕ ) | 
						
							| 96 | 95 | nnnn0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  𝑚 )  ∈  ℕ0 ) | 
						
							| 97 |  | faccl | ⊢ ( ( 𝑛  +  𝑚 )  ∈  ℕ0  →  ( ! ‘ ( 𝑛  +  𝑚 ) )  ∈  ℕ ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ! ‘ ( 𝑛  +  𝑚 ) )  ∈  ℕ ) | 
						
							| 99 | 93 98 | nndivred | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 100 | 99 | recnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 101 | 100 | fmpttd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 102 | 101 | ffvelcdmda | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 103 | 102 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 104 | 88 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 105 | 104 | nnred | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 106 | 71 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 107 | 84 106 | nnaddcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  ( 𝑚  +  1 ) )  ∈  ℕ ) | 
						
							| 108 | 105 107 | nndivred | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) )  ∈  ℝ ) | 
						
							| 109 | 108 | recnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) )  ∈  ℂ ) | 
						
							| 110 | 109 | fmpttd | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) : ℕ ⟶ ℂ ) | 
						
							| 111 | 110 | ffvelcdmda | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 112 | 111 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 113 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 115 | 114 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 116 |  | simpl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑚  ∈  ℕ0 ) | 
						
							| 117 | 115 116 | expp1d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) )  =  ( ( ( 𝑘  +  1 ) ↑ 𝑚 )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  =  ( ( ! ‘ 𝑘 )  ·  ( ( ( 𝑘  +  1 ) ↑ 𝑚 )  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 119 |  | simpr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 120 | 119 | nnnn0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 121 |  | faccl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 122 | 120 121 | syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 123 | 122 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 124 |  | nnexpcl | ⊢ ( ( ( 𝑘  +  1 )  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 125 | 113 124 | sylan | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 126 | 125 | ancoms | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 ) ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 127 | 126 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 ) ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 128 | 123 127 115 | mulassd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ·  ( 𝑘  +  1 ) )  =  ( ( ! ‘ 𝑘 )  ·  ( ( ( 𝑘  +  1 ) ↑ 𝑚 )  ·  ( 𝑘  +  1 ) ) ) ) | 
						
							| 129 | 118 128 | eqtr4d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ·  ( 𝑘  +  1 ) ) ) | 
						
							| 130 | 120 116 | nn0addcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  𝑚 )  ∈  ℕ0 ) | 
						
							| 131 |  | facp1 | ⊢ ( ( 𝑘  +  𝑚 )  ∈  ℕ0  →  ( ! ‘ ( ( 𝑘  +  𝑚 )  +  1 ) )  =  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( ( 𝑘  +  𝑚 )  +  1 ) ) ) | 
						
							| 132 | 130 131 | syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( ( 𝑘  +  𝑚 )  +  1 ) )  =  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( ( 𝑘  +  𝑚 )  +  1 ) ) ) | 
						
							| 133 | 119 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 134 | 116 | nn0cnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 135 |  | 1cnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 136 | 133 134 135 | addassd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  𝑚 )  +  1 )  =  ( 𝑘  +  ( 𝑚  +  1 ) ) ) | 
						
							| 137 | 136 | fveq2d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( ( 𝑘  +  𝑚 )  +  1 ) )  =  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 138 | 136 | oveq2d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( ( 𝑘  +  𝑚 )  +  1 ) )  =  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 139 | 132 137 138 | 3eqtr3d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) )  =  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 140 | 129 139 | oveq12d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) )  =  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ·  ( 𝑘  +  1 ) )  /  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 141 | 122 126 | nnmulcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ∈  ℕ ) | 
						
							| 142 | 141 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ∈  ℂ ) | 
						
							| 143 |  | faccl | ⊢ ( ( 𝑘  +  𝑚 )  ∈  ℕ0  →  ( ! ‘ ( 𝑘  +  𝑚 ) )  ∈  ℕ ) | 
						
							| 144 | 130 143 | syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( 𝑘  +  𝑚 ) )  ∈  ℕ ) | 
						
							| 145 | 144 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( 𝑘  +  𝑚 ) )  ∈  ℂ ) | 
						
							| 146 | 71 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ ) | 
						
							| 147 | 119 146 | nnaddcld | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  ( 𝑚  +  1 ) )  ∈  ℕ ) | 
						
							| 148 | 147 | nncnd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  ( 𝑚  +  1 ) )  ∈  ℂ ) | 
						
							| 149 | 144 | nnne0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ! ‘ ( 𝑘  +  𝑚 ) )  ≠  0 ) | 
						
							| 150 | 147 | nnne0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  ( 𝑚  +  1 ) )  ≠  0 ) | 
						
							| 151 | 142 145 115 148 149 150 | divmuldivd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) )  =  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  ·  ( 𝑘  +  1 ) )  /  ( ( ! ‘ ( 𝑘  +  𝑚 ) )  ·  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 152 | 140 151 | eqtr4d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) )  =  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 153 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑘 ) ) | 
						
							| 154 | 75 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) )  =  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) ) | 
						
							| 155 | 153 154 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  =  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) ) ) | 
						
							| 156 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) )  =  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) | 
						
							| 157 | 155 156 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 158 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 159 |  | ovex | ⊢ ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) )  ∈  V | 
						
							| 160 | 157 158 159 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 162 | 75 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑛  +  1 ) ↑ 𝑚 )  =  ( ( 𝑘  +  1 ) ↑ 𝑚 ) ) | 
						
							| 163 | 153 162 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  =  ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) ) ) | 
						
							| 164 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( ! ‘ ( 𝑛  +  𝑚 ) )  =  ( ! ‘ ( 𝑘  +  𝑚 ) ) ) | 
						
							| 165 | 163 164 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) ) ) | 
						
							| 166 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) | 
						
							| 167 |  | ovex | ⊢ ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) )  ∈  V | 
						
							| 168 | 165 166 167 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  =  ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) ) ) | 
						
							| 169 | 168 80 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 ) )  =  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 170 | 169 | adantl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 ) )  =  ( ( ( ( ! ‘ 𝑘 )  ·  ( ( 𝑘  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑘  +  𝑚 ) ) )  ·  ( ( 𝑘  +  1 )  /  ( 𝑘  +  ( 𝑚  +  1 ) ) ) ) ) | 
						
							| 171 | 152 161 170 | 3eqtr4d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 172 | 171 | adantlr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ) ‘ 𝑘 )  =  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) ) ‘ 𝑘 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  +  1 )  /  ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 173 | 30 65 66 68 83 103 112 172 | climmul | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ⇝  ( 1  ·  1 ) ) | 
						
							| 174 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 175 | 173 174 | breqtrdi | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ⇝  1 ) | 
						
							| 176 | 175 | ex | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑚 ) )  /  ( ! ‘ ( 𝑛  +  𝑚 ) ) ) )  ⇝  1  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ ( 𝑚  +  1 ) ) )  /  ( ! ‘ ( 𝑛  +  ( 𝑚  +  1 ) ) ) ) )  ⇝  1 ) ) | 
						
							| 177 | 8 15 22 29 64 176 | nn0ind | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( ! ‘ 𝑛 )  ·  ( ( 𝑛  +  1 ) ↑ 𝑀 ) )  /  ( ! ‘ ( 𝑛  +  𝑀 ) ) ) )  ⇝  1 ) | 
						
							| 178 | 1 177 | eqbrtrid | ⊢ ( 𝑀  ∈  ℕ0  →  𝐹  ⇝  1 ) |