| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faclim2.1 |  |-  F = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) | 
						
							| 2 |  | oveq2 |  |-  ( a = 0 -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ 0 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( a = 0 -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( a = 0 -> ( n + a ) = ( n + 0 ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( a = 0 -> ( ! ` ( n + a ) ) = ( ! ` ( n + 0 ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( a = 0 -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) | 
						
							| 7 | 6 | mpteq2dv |  |-  ( a = 0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ) | 
						
							| 8 | 7 | breq1d |  |-  ( a = 0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) ) | 
						
							| 9 |  | oveq2 |  |-  ( a = m -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ m ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( a = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( a = m -> ( n + a ) = ( n + m ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( a = m -> ( ! ` ( n + a ) ) = ( ! ` ( n + m ) ) ) | 
						
							| 13 | 10 12 | oveq12d |  |-  ( a = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) | 
						
							| 14 | 13 | mpteq2dv |  |-  ( a = m -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( a = m -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) ) | 
						
							| 16 |  | oveq2 |  |-  ( a = ( m + 1 ) -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ ( m + 1 ) ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( a = ( m + 1 ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) ) | 
						
							| 18 |  | oveq2 |  |-  ( a = ( m + 1 ) -> ( n + a ) = ( n + ( m + 1 ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( a = ( m + 1 ) -> ( ! ` ( n + a ) ) = ( ! ` ( n + ( m + 1 ) ) ) ) | 
						
							| 20 | 17 19 | oveq12d |  |-  ( a = ( m + 1 ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) | 
						
							| 21 | 20 | mpteq2dv |  |-  ( a = ( m + 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ) | 
						
							| 22 | 21 | breq1d |  |-  ( a = ( m + 1 ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) | 
						
							| 23 |  | oveq2 |  |-  ( a = M -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ M ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( a = M -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) ) | 
						
							| 25 |  | oveq2 |  |-  ( a = M -> ( n + a ) = ( n + M ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( a = M -> ( ! ` ( n + a ) ) = ( ! ` ( n + M ) ) ) | 
						
							| 27 | 24 26 | oveq12d |  |-  ( a = M -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) | 
						
							| 28 | 27 | mpteq2dv |  |-  ( a = M -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ) | 
						
							| 29 | 28 | breq1d |  |-  ( a = M -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) ) | 
						
							| 30 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 31 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 32 |  | nnex |  |-  NN e. _V | 
						
							| 33 | 32 | mptex |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V ) | 
						
							| 35 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 36 |  | fveq2 |  |-  ( n = m -> ( ! ` n ) = ( ! ` m ) ) | 
						
							| 37 |  | oveq1 |  |-  ( n = m -> ( n + 1 ) = ( m + 1 ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( n = m -> ( ( n + 1 ) ^ 0 ) = ( ( m + 1 ) ^ 0 ) ) | 
						
							| 39 | 36 38 | oveq12d |  |-  ( n = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) ) | 
						
							| 40 |  | fvoveq1 |  |-  ( n = m -> ( ! ` ( n + 0 ) ) = ( ! ` ( m + 0 ) ) ) | 
						
							| 41 | 39 40 | oveq12d |  |-  ( n = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) | 
						
							| 42 |  | eqid |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) | 
						
							| 43 |  | ovex |  |-  ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) e. _V | 
						
							| 44 | 41 42 43 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) | 
						
							| 45 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 46 | 45 | nncnd |  |-  ( m e. NN -> ( m + 1 ) e. CC ) | 
						
							| 47 | 46 | exp0d |  |-  ( m e. NN -> ( ( m + 1 ) ^ 0 ) = 1 ) | 
						
							| 48 | 47 | oveq2d |  |-  ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. 1 ) ) | 
						
							| 49 |  | nnnn0 |  |-  ( m e. NN -> m e. NN0 ) | 
						
							| 50 |  | faccl |  |-  ( m e. NN0 -> ( ! ` m ) e. NN ) | 
						
							| 51 | 49 50 | syl |  |-  ( m e. NN -> ( ! ` m ) e. NN ) | 
						
							| 52 | 51 | nncnd |  |-  ( m e. NN -> ( ! ` m ) e. CC ) | 
						
							| 53 | 52 | mulridd |  |-  ( m e. NN -> ( ( ! ` m ) x. 1 ) = ( ! ` m ) ) | 
						
							| 54 | 48 53 | eqtrd |  |-  ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ! ` m ) ) | 
						
							| 55 |  | nncn |  |-  ( m e. NN -> m e. CC ) | 
						
							| 56 | 55 | addridd |  |-  ( m e. NN -> ( m + 0 ) = m ) | 
						
							| 57 | 56 | fveq2d |  |-  ( m e. NN -> ( ! ` ( m + 0 ) ) = ( ! ` m ) ) | 
						
							| 58 | 54 57 | oveq12d |  |-  ( m e. NN -> ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) = ( ( ! ` m ) / ( ! ` m ) ) ) | 
						
							| 59 | 51 | nnne0d |  |-  ( m e. NN -> ( ! ` m ) =/= 0 ) | 
						
							| 60 | 52 59 | dividd |  |-  ( m e. NN -> ( ( ! ` m ) / ( ! ` m ) ) = 1 ) | 
						
							| 61 | 44 58 60 | 3eqtrd |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) | 
						
							| 62 | 61 | adantl |  |-  ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) | 
						
							| 63 | 30 31 34 35 62 | climconst |  |-  ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) | 
						
							| 64 | 63 | mptru |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 | 
						
							| 65 |  | 1zzd |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> 1 e. ZZ ) | 
						
							| 66 |  | simpr |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) | 
						
							| 67 | 32 | mptex |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V | 
						
							| 68 | 67 | a1i |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V ) | 
						
							| 69 |  | 1zzd |  |-  ( m e. NN0 -> 1 e. ZZ ) | 
						
							| 70 |  | 1cnd |  |-  ( m e. NN0 -> 1 e. CC ) | 
						
							| 71 |  | nn0p1nn |  |-  ( m e. NN0 -> ( m + 1 ) e. NN ) | 
						
							| 72 | 71 | nnzd |  |-  ( m e. NN0 -> ( m + 1 ) e. ZZ ) | 
						
							| 73 | 32 | mptex |  |-  ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V | 
						
							| 74 | 73 | a1i |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V ) | 
						
							| 75 |  | oveq1 |  |-  ( n = k -> ( n + 1 ) = ( k + 1 ) ) | 
						
							| 76 |  | oveq1 |  |-  ( n = k -> ( n + ( m + 1 ) ) = ( k + ( m + 1 ) ) ) | 
						
							| 77 | 75 76 | oveq12d |  |-  ( n = k -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) | 
						
							| 78 |  | eqid |  |-  ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) = ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) | 
						
							| 79 |  | ovex |  |-  ( ( k + 1 ) / ( k + ( m + 1 ) ) ) e. _V | 
						
							| 80 | 77 78 79 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) | 
						
							| 82 | 30 69 70 72 74 81 | divcnvlin |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) | 
						
							| 83 | 82 | adantr |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) | 
						
							| 84 |  | simpr |  |-  ( ( m e. NN0 /\ n e. NN ) -> n e. NN ) | 
						
							| 85 | 84 | nnnn0d |  |-  ( ( m e. NN0 /\ n e. NN ) -> n e. NN0 ) | 
						
							| 86 |  | faccl |  |-  ( n e. NN0 -> ( ! ` n ) e. NN ) | 
						
							| 87 | 85 86 | syl |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ! ` n ) e. NN ) | 
						
							| 88 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 89 |  | nnexpcl |  |-  ( ( ( n + 1 ) e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) | 
						
							| 90 | 88 89 | sylan |  |-  ( ( n e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) | 
						
							| 91 | 90 | ancoms |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) ^ m ) e. NN ) | 
						
							| 92 | 87 91 | nnmulcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. NN ) | 
						
							| 93 | 92 | nnred |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. RR ) | 
						
							| 94 |  | nnnn0addcl |  |-  ( ( n e. NN /\ m e. NN0 ) -> ( n + m ) e. NN ) | 
						
							| 95 | 94 | ancoms |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN ) | 
						
							| 96 | 95 | nnnn0d |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN0 ) | 
						
							| 97 |  | faccl |  |-  ( ( n + m ) e. NN0 -> ( ! ` ( n + m ) ) e. NN ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ! ` ( n + m ) ) e. NN ) | 
						
							| 99 | 93 98 | nndivred |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. RR ) | 
						
							| 100 | 99 | recnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. CC ) | 
						
							| 101 | 100 | fmpttd |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) : NN --> CC ) | 
						
							| 102 | 101 | ffvelcdmda |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) | 
						
							| 103 | 102 | adantlr |  |-  ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) | 
						
							| 104 | 88 | adantl |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 105 | 104 | nnred |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. RR ) | 
						
							| 106 | 71 | adantr |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 107 | 84 106 | nnaddcld |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( n + ( m + 1 ) ) e. NN ) | 
						
							| 108 | 105 107 | nndivred |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. RR ) | 
						
							| 109 | 108 | recnd |  |-  ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. CC ) | 
						
							| 110 | 109 | fmpttd |  |-  ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) : NN --> CC ) | 
						
							| 111 | 110 | ffvelcdmda |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) | 
						
							| 112 | 111 | adantlr |  |-  ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) | 
						
							| 113 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 114 | 113 | adantl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. NN ) | 
						
							| 115 | 114 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. CC ) | 
						
							| 116 |  | simpl |  |-  ( ( m e. NN0 /\ k e. NN ) -> m e. NN0 ) | 
						
							| 117 | 115 116 | expp1d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ ( m + 1 ) ) = ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) | 
						
							| 119 |  | simpr |  |-  ( ( m e. NN0 /\ k e. NN ) -> k e. NN ) | 
						
							| 120 | 119 | nnnn0d |  |-  ( ( m e. NN0 /\ k e. NN ) -> k e. NN0 ) | 
						
							| 121 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 122 | 120 121 | syl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. NN ) | 
						
							| 123 | 122 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. CC ) | 
						
							| 124 |  | nnexpcl |  |-  ( ( ( k + 1 ) e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) | 
						
							| 125 | 113 124 | sylan |  |-  ( ( k e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) | 
						
							| 126 | 125 | ancoms |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. NN ) | 
						
							| 127 | 126 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. CC ) | 
						
							| 128 | 123 127 115 | mulassd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) | 
						
							| 129 | 118 128 | eqtr4d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) ) | 
						
							| 130 | 120 116 | nn0addcld |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + m ) e. NN0 ) | 
						
							| 131 |  | facp1 |  |-  ( ( k + m ) e. NN0 -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) | 
						
							| 132 | 130 131 | syl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) | 
						
							| 133 | 119 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> k e. CC ) | 
						
							| 134 | 116 | nn0cnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> m e. CC ) | 
						
							| 135 |  | 1cnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> 1 e. CC ) | 
						
							| 136 | 133 134 135 | addassd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( k + m ) + 1 ) = ( k + ( m + 1 ) ) ) | 
						
							| 137 | 136 | fveq2d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) | 
						
							| 138 | 136 | oveq2d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) | 
						
							| 139 | 132 137 138 | 3eqtr3d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + ( m + 1 ) ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) | 
						
							| 140 | 129 139 | oveq12d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) | 
						
							| 141 | 122 126 | nnmulcld |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. NN ) | 
						
							| 142 | 141 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. CC ) | 
						
							| 143 |  | faccl |  |-  ( ( k + m ) e. NN0 -> ( ! ` ( k + m ) ) e. NN ) | 
						
							| 144 | 130 143 | syl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. NN ) | 
						
							| 145 | 144 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. CC ) | 
						
							| 146 | 71 | adantr |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( m + 1 ) e. NN ) | 
						
							| 147 | 119 146 | nnaddcld |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. NN ) | 
						
							| 148 | 147 | nncnd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. CC ) | 
						
							| 149 | 144 | nnne0d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) =/= 0 ) | 
						
							| 150 | 147 | nnne0d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) =/= 0 ) | 
						
							| 151 | 142 145 115 148 149 150 | divmuldivd |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) | 
						
							| 152 | 140 151 | eqtr4d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) | 
						
							| 153 |  | fveq2 |  |-  ( n = k -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 154 | 75 | oveq1d |  |-  ( n = k -> ( ( n + 1 ) ^ ( m + 1 ) ) = ( ( k + 1 ) ^ ( m + 1 ) ) ) | 
						
							| 155 | 153 154 | oveq12d |  |-  ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) ) | 
						
							| 156 |  | fvoveq1 |  |-  ( n = k -> ( ! ` ( n + ( m + 1 ) ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) | 
						
							| 157 | 155 156 | oveq12d |  |-  ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) | 
						
							| 158 |  | eqid |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) | 
						
							| 159 |  | ovex |  |-  ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) e. _V | 
						
							| 160 | 157 158 159 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) | 
						
							| 161 | 160 | adantl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) | 
						
							| 162 | 75 | oveq1d |  |-  ( n = k -> ( ( n + 1 ) ^ m ) = ( ( k + 1 ) ^ m ) ) | 
						
							| 163 | 153 162 | oveq12d |  |-  ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) ) | 
						
							| 164 |  | fvoveq1 |  |-  ( n = k -> ( ! ` ( n + m ) ) = ( ! ` ( k + m ) ) ) | 
						
							| 165 | 163 164 | oveq12d |  |-  ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) | 
						
							| 166 |  | eqid |  |-  ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) | 
						
							| 167 |  | ovex |  |-  ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) e. _V | 
						
							| 168 | 165 166 167 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) | 
						
							| 169 | 168 80 | oveq12d |  |-  ( k e. NN -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) | 
						
							| 170 | 169 | adantl |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) | 
						
							| 171 | 152 161 170 | 3eqtr4d |  |-  ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) | 
						
							| 172 | 171 | adantlr |  |-  ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) | 
						
							| 173 | 30 65 66 68 83 103 112 172 | climmul |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> ( 1 x. 1 ) ) | 
						
							| 174 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 175 | 173 174 | breqtrdi |  |-  ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) | 
						
							| 176 | 175 | ex |  |-  ( m e. NN0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) | 
						
							| 177 | 8 15 22 29 64 176 | nn0ind |  |-  ( M e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) | 
						
							| 178 | 1 177 | eqbrtrid |  |-  ( M e. NN0 -> F ~~> 1 ) |