| Step |
Hyp |
Ref |
Expression |
| 1 |
|
faclim2.1 |
|- F = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) |
| 2 |
|
oveq2 |
|- ( a = 0 -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ 0 ) ) |
| 3 |
2
|
oveq2d |
|- ( a = 0 -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) ) |
| 4 |
|
oveq2 |
|- ( a = 0 -> ( n + a ) = ( n + 0 ) ) |
| 5 |
4
|
fveq2d |
|- ( a = 0 -> ( ! ` ( n + a ) ) = ( ! ` ( n + 0 ) ) ) |
| 6 |
3 5
|
oveq12d |
|- ( a = 0 -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) |
| 7 |
6
|
mpteq2dv |
|- ( a = 0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ) |
| 8 |
7
|
breq1d |
|- ( a = 0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) ) |
| 9 |
|
oveq2 |
|- ( a = m -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ m ) ) |
| 10 |
9
|
oveq2d |
|- ( a = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) ) |
| 11 |
|
oveq2 |
|- ( a = m -> ( n + a ) = ( n + m ) ) |
| 12 |
11
|
fveq2d |
|- ( a = m -> ( ! ` ( n + a ) ) = ( ! ` ( n + m ) ) ) |
| 13 |
10 12
|
oveq12d |
|- ( a = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) |
| 14 |
13
|
mpteq2dv |
|- ( a = m -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ) |
| 15 |
14
|
breq1d |
|- ( a = m -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) ) |
| 16 |
|
oveq2 |
|- ( a = ( m + 1 ) -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ ( m + 1 ) ) ) |
| 17 |
16
|
oveq2d |
|- ( a = ( m + 1 ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) ) |
| 18 |
|
oveq2 |
|- ( a = ( m + 1 ) -> ( n + a ) = ( n + ( m + 1 ) ) ) |
| 19 |
18
|
fveq2d |
|- ( a = ( m + 1 ) -> ( ! ` ( n + a ) ) = ( ! ` ( n + ( m + 1 ) ) ) ) |
| 20 |
17 19
|
oveq12d |
|- ( a = ( m + 1 ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) |
| 21 |
20
|
mpteq2dv |
|- ( a = ( m + 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ) |
| 22 |
21
|
breq1d |
|- ( a = ( m + 1 ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) |
| 23 |
|
oveq2 |
|- ( a = M -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ M ) ) |
| 24 |
23
|
oveq2d |
|- ( a = M -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) ) |
| 25 |
|
oveq2 |
|- ( a = M -> ( n + a ) = ( n + M ) ) |
| 26 |
25
|
fveq2d |
|- ( a = M -> ( ! ` ( n + a ) ) = ( ! ` ( n + M ) ) ) |
| 27 |
24 26
|
oveq12d |
|- ( a = M -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) |
| 28 |
27
|
mpteq2dv |
|- ( a = M -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ) |
| 29 |
28
|
breq1d |
|- ( a = M -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) ) |
| 30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 31 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 32 |
|
nnex |
|- NN e. _V |
| 33 |
32
|
mptex |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V |
| 34 |
33
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V ) |
| 35 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 36 |
|
fveq2 |
|- ( n = m -> ( ! ` n ) = ( ! ` m ) ) |
| 37 |
|
oveq1 |
|- ( n = m -> ( n + 1 ) = ( m + 1 ) ) |
| 38 |
37
|
oveq1d |
|- ( n = m -> ( ( n + 1 ) ^ 0 ) = ( ( m + 1 ) ^ 0 ) ) |
| 39 |
36 38
|
oveq12d |
|- ( n = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) ) |
| 40 |
|
fvoveq1 |
|- ( n = m -> ( ! ` ( n + 0 ) ) = ( ! ` ( m + 0 ) ) ) |
| 41 |
39 40
|
oveq12d |
|- ( n = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) |
| 42 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) |
| 43 |
|
ovex |
|- ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) e. _V |
| 44 |
41 42 43
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) |
| 45 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
| 46 |
45
|
nncnd |
|- ( m e. NN -> ( m + 1 ) e. CC ) |
| 47 |
46
|
exp0d |
|- ( m e. NN -> ( ( m + 1 ) ^ 0 ) = 1 ) |
| 48 |
47
|
oveq2d |
|- ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. 1 ) ) |
| 49 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 50 |
|
faccl |
|- ( m e. NN0 -> ( ! ` m ) e. NN ) |
| 51 |
49 50
|
syl |
|- ( m e. NN -> ( ! ` m ) e. NN ) |
| 52 |
51
|
nncnd |
|- ( m e. NN -> ( ! ` m ) e. CC ) |
| 53 |
52
|
mulridd |
|- ( m e. NN -> ( ( ! ` m ) x. 1 ) = ( ! ` m ) ) |
| 54 |
48 53
|
eqtrd |
|- ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ! ` m ) ) |
| 55 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 56 |
55
|
addridd |
|- ( m e. NN -> ( m + 0 ) = m ) |
| 57 |
56
|
fveq2d |
|- ( m e. NN -> ( ! ` ( m + 0 ) ) = ( ! ` m ) ) |
| 58 |
54 57
|
oveq12d |
|- ( m e. NN -> ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) = ( ( ! ` m ) / ( ! ` m ) ) ) |
| 59 |
51
|
nnne0d |
|- ( m e. NN -> ( ! ` m ) =/= 0 ) |
| 60 |
52 59
|
dividd |
|- ( m e. NN -> ( ( ! ` m ) / ( ! ` m ) ) = 1 ) |
| 61 |
44 58 60
|
3eqtrd |
|- ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) |
| 62 |
61
|
adantl |
|- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) |
| 63 |
30 31 34 35 62
|
climconst |
|- ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) |
| 64 |
63
|
mptru |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 |
| 65 |
|
1zzd |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> 1 e. ZZ ) |
| 66 |
|
simpr |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) |
| 67 |
32
|
mptex |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V |
| 68 |
67
|
a1i |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V ) |
| 69 |
|
1zzd |
|- ( m e. NN0 -> 1 e. ZZ ) |
| 70 |
|
1cnd |
|- ( m e. NN0 -> 1 e. CC ) |
| 71 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
| 72 |
71
|
nnzd |
|- ( m e. NN0 -> ( m + 1 ) e. ZZ ) |
| 73 |
32
|
mptex |
|- ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V |
| 74 |
73
|
a1i |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V ) |
| 75 |
|
oveq1 |
|- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
| 76 |
|
oveq1 |
|- ( n = k -> ( n + ( m + 1 ) ) = ( k + ( m + 1 ) ) ) |
| 77 |
75 76
|
oveq12d |
|- ( n = k -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
| 78 |
|
eqid |
|- ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) = ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) |
| 79 |
|
ovex |
|- ( ( k + 1 ) / ( k + ( m + 1 ) ) ) e. _V |
| 80 |
77 78 79
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
| 81 |
80
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
| 82 |
30 69 70 72 74 81
|
divcnvlin |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) |
| 83 |
82
|
adantr |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) |
| 84 |
|
simpr |
|- ( ( m e. NN0 /\ n e. NN ) -> n e. NN ) |
| 85 |
84
|
nnnn0d |
|- ( ( m e. NN0 /\ n e. NN ) -> n e. NN0 ) |
| 86 |
|
faccl |
|- ( n e. NN0 -> ( ! ` n ) e. NN ) |
| 87 |
85 86
|
syl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ! ` n ) e. NN ) |
| 88 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 89 |
|
nnexpcl |
|- ( ( ( n + 1 ) e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) |
| 90 |
88 89
|
sylan |
|- ( ( n e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) |
| 91 |
90
|
ancoms |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) ^ m ) e. NN ) |
| 92 |
87 91
|
nnmulcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. NN ) |
| 93 |
92
|
nnred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. RR ) |
| 94 |
|
nnnn0addcl |
|- ( ( n e. NN /\ m e. NN0 ) -> ( n + m ) e. NN ) |
| 95 |
94
|
ancoms |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN ) |
| 96 |
95
|
nnnn0d |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN0 ) |
| 97 |
|
faccl |
|- ( ( n + m ) e. NN0 -> ( ! ` ( n + m ) ) e. NN ) |
| 98 |
96 97
|
syl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ! ` ( n + m ) ) e. NN ) |
| 99 |
93 98
|
nndivred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. RR ) |
| 100 |
99
|
recnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. CC ) |
| 101 |
100
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) : NN --> CC ) |
| 102 |
101
|
ffvelcdmda |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) |
| 103 |
102
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) |
| 104 |
88
|
adantl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 105 |
104
|
nnred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. RR ) |
| 106 |
71
|
adantr |
|- ( ( m e. NN0 /\ n e. NN ) -> ( m + 1 ) e. NN ) |
| 107 |
84 106
|
nnaddcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + ( m + 1 ) ) e. NN ) |
| 108 |
105 107
|
nndivred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. RR ) |
| 109 |
108
|
recnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. CC ) |
| 110 |
109
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) : NN --> CC ) |
| 111 |
110
|
ffvelcdmda |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) |
| 112 |
111
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) |
| 113 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 114 |
113
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 115 |
114
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. CC ) |
| 116 |
|
simpl |
|- ( ( m e. NN0 /\ k e. NN ) -> m e. NN0 ) |
| 117 |
115 116
|
expp1d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ ( m + 1 ) ) = ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) |
| 118 |
117
|
oveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) |
| 119 |
|
simpr |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. NN ) |
| 120 |
119
|
nnnn0d |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. NN0 ) |
| 121 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 122 |
120 121
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. NN ) |
| 123 |
122
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. CC ) |
| 124 |
|
nnexpcl |
|- ( ( ( k + 1 ) e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) |
| 125 |
113 124
|
sylan |
|- ( ( k e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) |
| 126 |
125
|
ancoms |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. NN ) |
| 127 |
126
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. CC ) |
| 128 |
123 127 115
|
mulassd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) |
| 129 |
118 128
|
eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) ) |
| 130 |
120 116
|
nn0addcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + m ) e. NN0 ) |
| 131 |
|
facp1 |
|- ( ( k + m ) e. NN0 -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) |
| 132 |
130 131
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) |
| 133 |
119
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. CC ) |
| 134 |
116
|
nn0cnd |
|- ( ( m e. NN0 /\ k e. NN ) -> m e. CC ) |
| 135 |
|
1cnd |
|- ( ( m e. NN0 /\ k e. NN ) -> 1 e. CC ) |
| 136 |
133 134 135
|
addassd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + m ) + 1 ) = ( k + ( m + 1 ) ) ) |
| 137 |
136
|
fveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) |
| 138 |
136
|
oveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) |
| 139 |
132 137 138
|
3eqtr3d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + ( m + 1 ) ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) |
| 140 |
129 139
|
oveq12d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) |
| 141 |
122 126
|
nnmulcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. NN ) |
| 142 |
141
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. CC ) |
| 143 |
|
faccl |
|- ( ( k + m ) e. NN0 -> ( ! ` ( k + m ) ) e. NN ) |
| 144 |
130 143
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. NN ) |
| 145 |
144
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. CC ) |
| 146 |
71
|
adantr |
|- ( ( m e. NN0 /\ k e. NN ) -> ( m + 1 ) e. NN ) |
| 147 |
119 146
|
nnaddcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. NN ) |
| 148 |
147
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. CC ) |
| 149 |
144
|
nnne0d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) =/= 0 ) |
| 150 |
147
|
nnne0d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) =/= 0 ) |
| 151 |
142 145 115 148 149 150
|
divmuldivd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) |
| 152 |
140 151
|
eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
| 153 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
| 154 |
75
|
oveq1d |
|- ( n = k -> ( ( n + 1 ) ^ ( m + 1 ) ) = ( ( k + 1 ) ^ ( m + 1 ) ) ) |
| 155 |
153 154
|
oveq12d |
|- ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) ) |
| 156 |
|
fvoveq1 |
|- ( n = k -> ( ! ` ( n + ( m + 1 ) ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) |
| 157 |
155 156
|
oveq12d |
|- ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
| 158 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) |
| 159 |
|
ovex |
|- ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) e. _V |
| 160 |
157 158 159
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
| 161 |
160
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
| 162 |
75
|
oveq1d |
|- ( n = k -> ( ( n + 1 ) ^ m ) = ( ( k + 1 ) ^ m ) ) |
| 163 |
153 162
|
oveq12d |
|- ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) ) |
| 164 |
|
fvoveq1 |
|- ( n = k -> ( ! ` ( n + m ) ) = ( ! ` ( k + m ) ) ) |
| 165 |
163 164
|
oveq12d |
|- ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) |
| 166 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) |
| 167 |
|
ovex |
|- ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) e. _V |
| 168 |
165 166 167
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) |
| 169 |
168 80
|
oveq12d |
|- ( k e. NN -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
| 170 |
169
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
| 171 |
152 161 170
|
3eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) |
| 172 |
171
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) |
| 173 |
30 65 66 68 83 103 112 172
|
climmul |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> ( 1 x. 1 ) ) |
| 174 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 175 |
173 174
|
breqtrdi |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) |
| 176 |
175
|
ex |
|- ( m e. NN0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) |
| 177 |
8 15 22 29 64 176
|
nn0ind |
|- ( M e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) |
| 178 |
1 177
|
eqbrtrid |
|- ( M e. NN0 -> F ~~> 1 ) |