Step |
Hyp |
Ref |
Expression |
1 |
|
faclim2.1 |
|- F = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) |
2 |
|
oveq2 |
|- ( a = 0 -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ 0 ) ) |
3 |
2
|
oveq2d |
|- ( a = 0 -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) ) |
4 |
|
oveq2 |
|- ( a = 0 -> ( n + a ) = ( n + 0 ) ) |
5 |
4
|
fveq2d |
|- ( a = 0 -> ( ! ` ( n + a ) ) = ( ! ` ( n + 0 ) ) ) |
6 |
3 5
|
oveq12d |
|- ( a = 0 -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) |
7 |
6
|
mpteq2dv |
|- ( a = 0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ) |
8 |
7
|
breq1d |
|- ( a = 0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) ) |
9 |
|
oveq2 |
|- ( a = m -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ m ) ) |
10 |
9
|
oveq2d |
|- ( a = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) ) |
11 |
|
oveq2 |
|- ( a = m -> ( n + a ) = ( n + m ) ) |
12 |
11
|
fveq2d |
|- ( a = m -> ( ! ` ( n + a ) ) = ( ! ` ( n + m ) ) ) |
13 |
10 12
|
oveq12d |
|- ( a = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) |
14 |
13
|
mpteq2dv |
|- ( a = m -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ) |
15 |
14
|
breq1d |
|- ( a = m -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) ) |
16 |
|
oveq2 |
|- ( a = ( m + 1 ) -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ ( m + 1 ) ) ) |
17 |
16
|
oveq2d |
|- ( a = ( m + 1 ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) ) |
18 |
|
oveq2 |
|- ( a = ( m + 1 ) -> ( n + a ) = ( n + ( m + 1 ) ) ) |
19 |
18
|
fveq2d |
|- ( a = ( m + 1 ) -> ( ! ` ( n + a ) ) = ( ! ` ( n + ( m + 1 ) ) ) ) |
20 |
17 19
|
oveq12d |
|- ( a = ( m + 1 ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) |
21 |
20
|
mpteq2dv |
|- ( a = ( m + 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ) |
22 |
21
|
breq1d |
|- ( a = ( m + 1 ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) |
23 |
|
oveq2 |
|- ( a = M -> ( ( n + 1 ) ^ a ) = ( ( n + 1 ) ^ M ) ) |
24 |
23
|
oveq2d |
|- ( a = M -> ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) = ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) ) |
25 |
|
oveq2 |
|- ( a = M -> ( n + a ) = ( n + M ) ) |
26 |
25
|
fveq2d |
|- ( a = M -> ( ! ` ( n + a ) ) = ( ! ` ( n + M ) ) ) |
27 |
24 26
|
oveq12d |
|- ( a = M -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) = ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) |
28 |
27
|
mpteq2dv |
|- ( a = M -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ) |
29 |
28
|
breq1d |
|- ( a = M -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ a ) ) / ( ! ` ( n + a ) ) ) ) ~~> 1 <-> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) ) |
30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
31 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
32 |
|
nnex |
|- NN e. _V |
33 |
32
|
mptex |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V |
34 |
33
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) e. _V ) |
35 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
36 |
|
fveq2 |
|- ( n = m -> ( ! ` n ) = ( ! ` m ) ) |
37 |
|
oveq1 |
|- ( n = m -> ( n + 1 ) = ( m + 1 ) ) |
38 |
37
|
oveq1d |
|- ( n = m -> ( ( n + 1 ) ^ 0 ) = ( ( m + 1 ) ^ 0 ) ) |
39 |
36 38
|
oveq12d |
|- ( n = m -> ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) ) |
40 |
|
fvoveq1 |
|- ( n = m -> ( ! ` ( n + 0 ) ) = ( ! ` ( m + 0 ) ) ) |
41 |
39 40
|
oveq12d |
|- ( n = m -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) |
42 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) |
43 |
|
ovex |
|- ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) e. _V |
44 |
41 42 43
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) ) |
45 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
46 |
45
|
nncnd |
|- ( m e. NN -> ( m + 1 ) e. CC ) |
47 |
46
|
exp0d |
|- ( m e. NN -> ( ( m + 1 ) ^ 0 ) = 1 ) |
48 |
47
|
oveq2d |
|- ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ( ! ` m ) x. 1 ) ) |
49 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
50 |
|
faccl |
|- ( m e. NN0 -> ( ! ` m ) e. NN ) |
51 |
49 50
|
syl |
|- ( m e. NN -> ( ! ` m ) e. NN ) |
52 |
51
|
nncnd |
|- ( m e. NN -> ( ! ` m ) e. CC ) |
53 |
52
|
mulid1d |
|- ( m e. NN -> ( ( ! ` m ) x. 1 ) = ( ! ` m ) ) |
54 |
48 53
|
eqtrd |
|- ( m e. NN -> ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) = ( ! ` m ) ) |
55 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
56 |
55
|
addid1d |
|- ( m e. NN -> ( m + 0 ) = m ) |
57 |
56
|
fveq2d |
|- ( m e. NN -> ( ! ` ( m + 0 ) ) = ( ! ` m ) ) |
58 |
54 57
|
oveq12d |
|- ( m e. NN -> ( ( ( ! ` m ) x. ( ( m + 1 ) ^ 0 ) ) / ( ! ` ( m + 0 ) ) ) = ( ( ! ` m ) / ( ! ` m ) ) ) |
59 |
51
|
nnne0d |
|- ( m e. NN -> ( ! ` m ) =/= 0 ) |
60 |
52 59
|
dividd |
|- ( m e. NN -> ( ( ! ` m ) / ( ! ` m ) ) = 1 ) |
61 |
44 58 60
|
3eqtrd |
|- ( m e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) |
62 |
61
|
adantl |
|- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ` m ) = 1 ) |
63 |
30 31 34 35 62
|
climconst |
|- ( T. -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 ) |
64 |
63
|
mptru |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ 0 ) ) / ( ! ` ( n + 0 ) ) ) ) ~~> 1 |
65 |
|
1zzd |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> 1 e. ZZ ) |
66 |
|
simpr |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) |
67 |
32
|
mptex |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V |
68 |
67
|
a1i |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) e. _V ) |
69 |
|
1zzd |
|- ( m e. NN0 -> 1 e. ZZ ) |
70 |
|
1cnd |
|- ( m e. NN0 -> 1 e. CC ) |
71 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
72 |
71
|
nnzd |
|- ( m e. NN0 -> ( m + 1 ) e. ZZ ) |
73 |
32
|
mptex |
|- ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V |
74 |
73
|
a1i |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) e. _V ) |
75 |
|
oveq1 |
|- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
76 |
|
oveq1 |
|- ( n = k -> ( n + ( m + 1 ) ) = ( k + ( m + 1 ) ) ) |
77 |
75 76
|
oveq12d |
|- ( n = k -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
78 |
|
eqid |
|- ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) = ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) |
79 |
|
ovex |
|- ( ( k + 1 ) / ( k + ( m + 1 ) ) ) e. _V |
80 |
77 78 79
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
81 |
80
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) = ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) |
82 |
30 69 70 72 74 81
|
divcnvlin |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) |
83 |
82
|
adantr |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ~~> 1 ) |
84 |
|
simpr |
|- ( ( m e. NN0 /\ n e. NN ) -> n e. NN ) |
85 |
84
|
nnnn0d |
|- ( ( m e. NN0 /\ n e. NN ) -> n e. NN0 ) |
86 |
|
faccl |
|- ( n e. NN0 -> ( ! ` n ) e. NN ) |
87 |
85 86
|
syl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ! ` n ) e. NN ) |
88 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
89 |
|
nnexpcl |
|- ( ( ( n + 1 ) e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) |
90 |
88 89
|
sylan |
|- ( ( n e. NN /\ m e. NN0 ) -> ( ( n + 1 ) ^ m ) e. NN ) |
91 |
90
|
ancoms |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) ^ m ) e. NN ) |
92 |
87 91
|
nnmulcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. NN ) |
93 |
92
|
nnred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) e. RR ) |
94 |
|
nnnn0addcl |
|- ( ( n e. NN /\ m e. NN0 ) -> ( n + m ) e. NN ) |
95 |
94
|
ancoms |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN ) |
96 |
95
|
nnnn0d |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + m ) e. NN0 ) |
97 |
|
faccl |
|- ( ( n + m ) e. NN0 -> ( ! ` ( n + m ) ) e. NN ) |
98 |
96 97
|
syl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ! ` ( n + m ) ) e. NN ) |
99 |
93 98
|
nndivred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. RR ) |
100 |
99
|
recnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) e. CC ) |
101 |
100
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) : NN --> CC ) |
102 |
101
|
ffvelrnda |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) |
103 |
102
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) e. CC ) |
104 |
88
|
adantl |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. NN ) |
105 |
104
|
nnred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + 1 ) e. RR ) |
106 |
71
|
adantr |
|- ( ( m e. NN0 /\ n e. NN ) -> ( m + 1 ) e. NN ) |
107 |
84 106
|
nnaddcld |
|- ( ( m e. NN0 /\ n e. NN ) -> ( n + ( m + 1 ) ) e. NN ) |
108 |
105 107
|
nndivred |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. RR ) |
109 |
108
|
recnd |
|- ( ( m e. NN0 /\ n e. NN ) -> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) e. CC ) |
110 |
109
|
fmpttd |
|- ( m e. NN0 -> ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) : NN --> CC ) |
111 |
110
|
ffvelrnda |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) |
112 |
111
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) e. CC ) |
113 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
114 |
113
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. NN ) |
115 |
114
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + 1 ) e. CC ) |
116 |
|
simpl |
|- ( ( m e. NN0 /\ k e. NN ) -> m e. NN0 ) |
117 |
115 116
|
expp1d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ ( m + 1 ) ) = ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) |
118 |
117
|
oveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) |
119 |
|
simpr |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. NN ) |
120 |
119
|
nnnn0d |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. NN0 ) |
121 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
122 |
120 121
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. NN ) |
123 |
122
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` k ) e. CC ) |
124 |
|
nnexpcl |
|- ( ( ( k + 1 ) e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) |
125 |
113 124
|
sylan |
|- ( ( k e. NN /\ m e. NN0 ) -> ( ( k + 1 ) ^ m ) e. NN ) |
126 |
125
|
ancoms |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. NN ) |
127 |
126
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + 1 ) ^ m ) e. CC ) |
128 |
123 127 115
|
mulassd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) = ( ( ! ` k ) x. ( ( ( k + 1 ) ^ m ) x. ( k + 1 ) ) ) ) |
129 |
118 128
|
eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) ) |
130 |
120 116
|
nn0addcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + m ) e. NN0 ) |
131 |
|
facp1 |
|- ( ( k + m ) e. NN0 -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) |
132 |
130 131
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) ) |
133 |
119
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> k e. CC ) |
134 |
116
|
nn0cnd |
|- ( ( m e. NN0 /\ k e. NN ) -> m e. CC ) |
135 |
|
1cnd |
|- ( ( m e. NN0 /\ k e. NN ) -> 1 e. CC ) |
136 |
133 134 135
|
addassd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( k + m ) + 1 ) = ( k + ( m + 1 ) ) ) |
137 |
136
|
fveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( ( k + m ) + 1 ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) |
138 |
136
|
oveq2d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` ( k + m ) ) x. ( ( k + m ) + 1 ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) |
139 |
132 137 138
|
3eqtr3d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + ( m + 1 ) ) ) = ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) |
140 |
129 139
|
oveq12d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) |
141 |
122 126
|
nnmulcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. NN ) |
142 |
141
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) e. CC ) |
143 |
|
faccl |
|- ( ( k + m ) e. NN0 -> ( ! ` ( k + m ) ) e. NN ) |
144 |
130 143
|
syl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. NN ) |
145 |
144
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) e. CC ) |
146 |
71
|
adantr |
|- ( ( m e. NN0 /\ k e. NN ) -> ( m + 1 ) e. NN ) |
147 |
119 146
|
nnaddcld |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. NN ) |
148 |
147
|
nncnd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) e. CC ) |
149 |
144
|
nnne0d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ! ` ( k + m ) ) =/= 0 ) |
150 |
147
|
nnne0d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( k + ( m + 1 ) ) =/= 0 ) |
151 |
142 145 115 148 149 150
|
divmuldivd |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) x. ( k + 1 ) ) / ( ( ! ` ( k + m ) ) x. ( k + ( m + 1 ) ) ) ) ) |
152 |
140 151
|
eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
153 |
|
fveq2 |
|- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
154 |
75
|
oveq1d |
|- ( n = k -> ( ( n + 1 ) ^ ( m + 1 ) ) = ( ( k + 1 ) ^ ( m + 1 ) ) ) |
155 |
153 154
|
oveq12d |
|- ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) ) |
156 |
|
fvoveq1 |
|- ( n = k -> ( ! ` ( n + ( m + 1 ) ) ) = ( ! ` ( k + ( m + 1 ) ) ) ) |
157 |
155 156
|
oveq12d |
|- ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
158 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) |
159 |
|
ovex |
|- ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) e. _V |
160 |
157 158 159
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
161 |
160
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( k + ( m + 1 ) ) ) ) ) |
162 |
75
|
oveq1d |
|- ( n = k -> ( ( n + 1 ) ^ m ) = ( ( k + 1 ) ^ m ) ) |
163 |
153 162
|
oveq12d |
|- ( n = k -> ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) = ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) ) |
164 |
|
fvoveq1 |
|- ( n = k -> ( ! ` ( n + m ) ) = ( ! ` ( k + m ) ) ) |
165 |
163 164
|
oveq12d |
|- ( n = k -> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) |
166 |
|
eqid |
|- ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) = ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) |
167 |
|
ovex |
|- ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) e. _V |
168 |
165 166 167
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) = ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) ) |
169 |
168 80
|
oveq12d |
|- ( k e. NN -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
170 |
169
|
adantl |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) = ( ( ( ( ! ` k ) x. ( ( k + 1 ) ^ m ) ) / ( ! ` ( k + m ) ) ) x. ( ( k + 1 ) / ( k + ( m + 1 ) ) ) ) ) |
171 |
152 161 170
|
3eqtr4d |
|- ( ( m e. NN0 /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) |
172 |
171
|
adantlr |
|- ( ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ` k ) x. ( ( n e. NN |-> ( ( n + 1 ) / ( n + ( m + 1 ) ) ) ) ` k ) ) ) |
173 |
30 65 66 68 83 103 112 172
|
climmul |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> ( 1 x. 1 ) ) |
174 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
175 |
173 174
|
breqtrdi |
|- ( ( m e. NN0 /\ ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 ) -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) |
176 |
175
|
ex |
|- ( m e. NN0 -> ( ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ m ) ) / ( ! ` ( n + m ) ) ) ) ~~> 1 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ ( m + 1 ) ) ) / ( ! ` ( n + ( m + 1 ) ) ) ) ) ~~> 1 ) ) |
177 |
8 15 22 29 64 176
|
nn0ind |
|- ( M e. NN0 -> ( n e. NN |-> ( ( ( ! ` n ) x. ( ( n + 1 ) ^ M ) ) / ( ! ` ( n + M ) ) ) ) ~~> 1 ) |
178 |
1 177
|
eqbrtrid |
|- ( M e. NN0 -> F ~~> 1 ) |