Metamath Proof Explorer


Theorem faclim2

Description: Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017)

Ref Expression
Hypothesis faclim2.1 F = n n ! n + 1 M n + M !
Assertion faclim2 M 0 F 1

Proof

Step Hyp Ref Expression
1 faclim2.1 F = n n ! n + 1 M n + M !
2 oveq2 a = 0 n + 1 a = n + 1 0
3 2 oveq2d a = 0 n ! n + 1 a = n ! n + 1 0
4 oveq2 a = 0 n + a = n + 0
5 4 fveq2d a = 0 n + a ! = n + 0 !
6 3 5 oveq12d a = 0 n ! n + 1 a n + a ! = n ! n + 1 0 n + 0 !
7 6 mpteq2dv a = 0 n n ! n + 1 a n + a ! = n n ! n + 1 0 n + 0 !
8 7 breq1d a = 0 n n ! n + 1 a n + a ! 1 n n ! n + 1 0 n + 0 ! 1
9 oveq2 a = m n + 1 a = n + 1 m
10 9 oveq2d a = m n ! n + 1 a = n ! n + 1 m
11 oveq2 a = m n + a = n + m
12 11 fveq2d a = m n + a ! = n + m !
13 10 12 oveq12d a = m n ! n + 1 a n + a ! = n ! n + 1 m n + m !
14 13 mpteq2dv a = m n n ! n + 1 a n + a ! = n n ! n + 1 m n + m !
15 14 breq1d a = m n n ! n + 1 a n + a ! 1 n n ! n + 1 m n + m ! 1
16 oveq2 a = m + 1 n + 1 a = n + 1 m + 1
17 16 oveq2d a = m + 1 n ! n + 1 a = n ! n + 1 m + 1
18 oveq2 a = m + 1 n + a = n + m + 1
19 18 fveq2d a = m + 1 n + a ! = n + m + 1 !
20 17 19 oveq12d a = m + 1 n ! n + 1 a n + a ! = n ! n + 1 m + 1 n + m + 1 !
21 20 mpteq2dv a = m + 1 n n ! n + 1 a n + a ! = n n ! n + 1 m + 1 n + m + 1 !
22 21 breq1d a = m + 1 n n ! n + 1 a n + a ! 1 n n ! n + 1 m + 1 n + m + 1 ! 1
23 oveq2 a = M n + 1 a = n + 1 M
24 23 oveq2d a = M n ! n + 1 a = n ! n + 1 M
25 oveq2 a = M n + a = n + M
26 25 fveq2d a = M n + a ! = n + M !
27 24 26 oveq12d a = M n ! n + 1 a n + a ! = n ! n + 1 M n + M !
28 27 mpteq2dv a = M n n ! n + 1 a n + a ! = n n ! n + 1 M n + M !
29 28 breq1d a = M n n ! n + 1 a n + a ! 1 n n ! n + 1 M n + M ! 1
30 nnuz = 1
31 1zzd 1
32 nnex V
33 32 mptex n n ! n + 1 0 n + 0 ! V
34 33 a1i n n ! n + 1 0 n + 0 ! V
35 1cnd 1
36 fveq2 n = m n ! = m !
37 oveq1 n = m n + 1 = m + 1
38 37 oveq1d n = m n + 1 0 = m + 1 0
39 36 38 oveq12d n = m n ! n + 1 0 = m ! m + 1 0
40 fvoveq1 n = m n + 0 ! = m + 0 !
41 39 40 oveq12d n = m n ! n + 1 0 n + 0 ! = m ! m + 1 0 m + 0 !
42 eqid n n ! n + 1 0 n + 0 ! = n n ! n + 1 0 n + 0 !
43 ovex m ! m + 1 0 m + 0 ! V
44 41 42 43 fvmpt m n n ! n + 1 0 n + 0 ! m = m ! m + 1 0 m + 0 !
45 peano2nn m m + 1
46 45 nncnd m m + 1
47 46 exp0d m m + 1 0 = 1
48 47 oveq2d m m ! m + 1 0 = m ! 1
49 nnnn0 m m 0
50 faccl m 0 m !
51 49 50 syl m m !
52 51 nncnd m m !
53 52 mulid1d m m ! 1 = m !
54 48 53 eqtrd m m ! m + 1 0 = m !
55 nncn m m
56 55 addid1d m m + 0 = m
57 56 fveq2d m m + 0 ! = m !
58 54 57 oveq12d m m ! m + 1 0 m + 0 ! = m ! m !
59 51 nnne0d m m ! 0
60 52 59 dividd m m ! m ! = 1
61 44 58 60 3eqtrd m n n ! n + 1 0 n + 0 ! m = 1
62 61 adantl m n n ! n + 1 0 n + 0 ! m = 1
63 30 31 34 35 62 climconst n n ! n + 1 0 n + 0 ! 1
64 63 mptru n n ! n + 1 0 n + 0 ! 1
65 1zzd m 0 n n ! n + 1 m n + m ! 1 1
66 simpr m 0 n n ! n + 1 m n + m ! 1 n n ! n + 1 m n + m ! 1
67 32 mptex n n ! n + 1 m + 1 n + m + 1 ! V
68 67 a1i m 0 n n ! n + 1 m n + m ! 1 n n ! n + 1 m + 1 n + m + 1 ! V
69 1zzd m 0 1
70 1cnd m 0 1
71 nn0p1nn m 0 m + 1
72 71 nnzd m 0 m + 1
73 32 mptex n n + 1 n + m + 1 V
74 73 a1i m 0 n n + 1 n + m + 1 V
75 oveq1 n = k n + 1 = k + 1
76 oveq1 n = k n + m + 1 = k + m + 1
77 75 76 oveq12d n = k n + 1 n + m + 1 = k + 1 k + m + 1
78 eqid n n + 1 n + m + 1 = n n + 1 n + m + 1
79 ovex k + 1 k + m + 1 V
80 77 78 79 fvmpt k n n + 1 n + m + 1 k = k + 1 k + m + 1
81 80 adantl m 0 k n n + 1 n + m + 1 k = k + 1 k + m + 1
82 30 69 70 72 74 81 divcnvlin m 0 n n + 1 n + m + 1 1
83 82 adantr m 0 n n ! n + 1 m n + m ! 1 n n + 1 n + m + 1 1
84 simpr m 0 n n
85 84 nnnn0d m 0 n n 0
86 faccl n 0 n !
87 85 86 syl m 0 n n !
88 peano2nn n n + 1
89 nnexpcl n + 1 m 0 n + 1 m
90 88 89 sylan n m 0 n + 1 m
91 90 ancoms m 0 n n + 1 m
92 87 91 nnmulcld m 0 n n ! n + 1 m
93 92 nnred m 0 n n ! n + 1 m
94 nnnn0addcl n m 0 n + m
95 94 ancoms m 0 n n + m
96 95 nnnn0d m 0 n n + m 0
97 faccl n + m 0 n + m !
98 96 97 syl m 0 n n + m !
99 93 98 nndivred m 0 n n ! n + 1 m n + m !
100 99 recnd m 0 n n ! n + 1 m n + m !
101 100 fmpttd m 0 n n ! n + 1 m n + m ! :
102 101 ffvelrnda m 0 k n n ! n + 1 m n + m ! k
103 102 adantlr m 0 n n ! n + 1 m n + m ! 1 k n n ! n + 1 m n + m ! k
104 88 adantl m 0 n n + 1
105 104 nnred m 0 n n + 1
106 71 adantr m 0 n m + 1
107 84 106 nnaddcld m 0 n n + m + 1
108 105 107 nndivred m 0 n n + 1 n + m + 1
109 108 recnd m 0 n n + 1 n + m + 1
110 109 fmpttd m 0 n n + 1 n + m + 1 :
111 110 ffvelrnda m 0 k n n + 1 n + m + 1 k
112 111 adantlr m 0 n n ! n + 1 m n + m ! 1 k n n + 1 n + m + 1 k
113 peano2nn k k + 1
114 113 adantl m 0 k k + 1
115 114 nncnd m 0 k k + 1
116 simpl m 0 k m 0
117 115 116 expp1d m 0 k k + 1 m + 1 = k + 1 m k + 1
118 117 oveq2d m 0 k k ! k + 1 m + 1 = k ! k + 1 m k + 1
119 simpr m 0 k k
120 119 nnnn0d m 0 k k 0
121 faccl k 0 k !
122 120 121 syl m 0 k k !
123 122 nncnd m 0 k k !
124 nnexpcl k + 1 m 0 k + 1 m
125 113 124 sylan k m 0 k + 1 m
126 125 ancoms m 0 k k + 1 m
127 126 nncnd m 0 k k + 1 m
128 123 127 115 mulassd m 0 k k ! k + 1 m k + 1 = k ! k + 1 m k + 1
129 118 128 eqtr4d m 0 k k ! k + 1 m + 1 = k ! k + 1 m k + 1
130 120 116 nn0addcld m 0 k k + m 0
131 facp1 k + m 0 k + m + 1 ! = k + m ! k + m + 1
132 130 131 syl m 0 k k + m + 1 ! = k + m ! k + m + 1
133 119 nncnd m 0 k k
134 116 nn0cnd m 0 k m
135 1cnd m 0 k 1
136 133 134 135 addassd m 0 k k + m + 1 = k + m + 1
137 136 fveq2d m 0 k k + m + 1 ! = k + m + 1 !
138 136 oveq2d m 0 k k + m ! k + m + 1 = k + m ! k + m + 1
139 132 137 138 3eqtr3d m 0 k k + m + 1 ! = k + m ! k + m + 1
140 129 139 oveq12d m 0 k k ! k + 1 m + 1 k + m + 1 ! = k ! k + 1 m k + 1 k + m ! k + m + 1
141 122 126 nnmulcld m 0 k k ! k + 1 m
142 141 nncnd m 0 k k ! k + 1 m
143 faccl k + m 0 k + m !
144 130 143 syl m 0 k k + m !
145 144 nncnd m 0 k k + m !
146 71 adantr m 0 k m + 1
147 119 146 nnaddcld m 0 k k + m + 1
148 147 nncnd m 0 k k + m + 1
149 144 nnne0d m 0 k k + m ! 0
150 147 nnne0d m 0 k k + m + 1 0
151 142 145 115 148 149 150 divmuldivd m 0 k k ! k + 1 m k + m ! k + 1 k + m + 1 = k ! k + 1 m k + 1 k + m ! k + m + 1
152 140 151 eqtr4d m 0 k k ! k + 1 m + 1 k + m + 1 ! = k ! k + 1 m k + m ! k + 1 k + m + 1
153 fveq2 n = k n ! = k !
154 75 oveq1d n = k n + 1 m + 1 = k + 1 m + 1
155 153 154 oveq12d n = k n ! n + 1 m + 1 = k ! k + 1 m + 1
156 fvoveq1 n = k n + m + 1 ! = k + m + 1 !
157 155 156 oveq12d n = k n ! n + 1 m + 1 n + m + 1 ! = k ! k + 1 m + 1 k + m + 1 !
158 eqid n n ! n + 1 m + 1 n + m + 1 ! = n n ! n + 1 m + 1 n + m + 1 !
159 ovex k ! k + 1 m + 1 k + m + 1 ! V
160 157 158 159 fvmpt k n n ! n + 1 m + 1 n + m + 1 ! k = k ! k + 1 m + 1 k + m + 1 !
161 160 adantl m 0 k n n ! n + 1 m + 1 n + m + 1 ! k = k ! k + 1 m + 1 k + m + 1 !
162 75 oveq1d n = k n + 1 m = k + 1 m
163 153 162 oveq12d n = k n ! n + 1 m = k ! k + 1 m
164 fvoveq1 n = k n + m ! = k + m !
165 163 164 oveq12d n = k n ! n + 1 m n + m ! = k ! k + 1 m k + m !
166 eqid n n ! n + 1 m n + m ! = n n ! n + 1 m n + m !
167 ovex k ! k + 1 m k + m ! V
168 165 166 167 fvmpt k n n ! n + 1 m n + m ! k = k ! k + 1 m k + m !
169 168 80 oveq12d k n n ! n + 1 m n + m ! k n n + 1 n + m + 1 k = k ! k + 1 m k + m ! k + 1 k + m + 1
170 169 adantl m 0 k n n ! n + 1 m n + m ! k n n + 1 n + m + 1 k = k ! k + 1 m k + m ! k + 1 k + m + 1
171 152 161 170 3eqtr4d m 0 k n n ! n + 1 m + 1 n + m + 1 ! k = n n ! n + 1 m n + m ! k n n + 1 n + m + 1 k
172 171 adantlr m 0 n n ! n + 1 m n + m ! 1 k n n ! n + 1 m + 1 n + m + 1 ! k = n n ! n + 1 m n + m ! k n n + 1 n + m + 1 k
173 30 65 66 68 83 103 112 172 climmul m 0 n n ! n + 1 m n + m ! 1 n n ! n + 1 m + 1 n + m + 1 ! 1 1
174 1t1e1 1 1 = 1
175 173 174 breqtrdi m 0 n n ! n + 1 m n + m ! 1 n n ! n + 1 m + 1 n + m + 1 ! 1
176 175 ex m 0 n n ! n + 1 m n + m ! 1 n n ! n + 1 m + 1 n + m + 1 ! 1
177 8 15 22 29 64 176 nn0ind M 0 n n ! n + 1 M n + M ! 1
178 1 177 eqbrtrid M 0 F 1