Description: Lemma for faclim . Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | faclimlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp | |
|
2 | 1 | a1i | |
3 | nnrp | |
|
4 | 3 | rpreccld | |
5 | 4 | adantl | |
6 | 2 5 | rpaddcld | |
7 | 6 | rpcnd | |
8 | simpl | |
|
9 | 7 8 | expp1d | |
10 | 1 | a1i | |
11 | 10 4 | rpaddcld | |
12 | nn0z | |
|
13 | rpexpcl | |
|
14 | 11 12 13 | syl2anr | |
15 | 14 | rpcnd | |
16 | 1cnd | |
|
17 | nn0nndivcl | |
|
18 | 17 | recnd | |
19 | 16 18 | addcomd | |
20 | nn0ge0div | |
|
21 | 17 20 | ge0p1rpd | |
22 | 19 21 | eqeltrd | |
23 | 22 | rpcnd | |
24 | 22 | rpne0d | |
25 | 15 23 24 | divcan1d | |
26 | 25 | oveq1d | |
27 | 14 22 | rpdivcld | |
28 | 27 | rpcnd | |
29 | 28 23 7 | mulassd | |
30 | 9 26 29 | 3eqtr2d | |
31 | 30 | oveq1d | |
32 | 22 6 | rpmulcld | |
33 | 32 | rpcnd | |
34 | nn0p1nn | |
|
35 | 34 | nnrpd | |
36 | 35 | adantr | |
37 | 3 | adantl | |
38 | 36 37 | rpdivcld | |
39 | 2 38 | rpaddcld | |
40 | 39 | rpcnd | |
41 | 39 | rpne0d | |
42 | 28 33 40 41 | divassd | |
43 | 31 42 | eqtrd | |