Metamath Proof Explorer


Theorem faclimlem3

Description: Lemma for faclim . Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion faclimlem3 M0B1+1BM+11+M+1B=1+1BM1+MB1+MB1+1B1+M+1B

Proof

Step Hyp Ref Expression
1 1rp 1+
2 1 a1i M0B1+
3 nnrp BB+
4 3 rpreccld B1B+
5 4 adantl M0B1B+
6 2 5 rpaddcld M0B1+1B+
7 6 rpcnd M0B1+1B
8 simpl M0BM0
9 7 8 expp1d M0B1+1BM+1=1+1BM1+1B
10 1 a1i B1+
11 10 4 rpaddcld B1+1B+
12 nn0z M0M
13 rpexpcl 1+1B+M1+1BM+
14 11 12 13 syl2anr M0B1+1BM+
15 14 rpcnd M0B1+1BM
16 1cnd M0B1
17 nn0nndivcl M0BMB
18 17 recnd M0BMB
19 16 18 addcomd M0B1+MB=MB+1
20 nn0ge0div M0B0MB
21 17 20 ge0p1rpd M0BMB+1+
22 19 21 eqeltrd M0B1+MB+
23 22 rpcnd M0B1+MB
24 22 rpne0d M0B1+MB0
25 15 23 24 divcan1d M0B1+1BM1+MB1+MB=1+1BM
26 25 oveq1d M0B1+1BM1+MB1+MB1+1B=1+1BM1+1B
27 14 22 rpdivcld M0B1+1BM1+MB+
28 27 rpcnd M0B1+1BM1+MB
29 28 23 7 mulassd M0B1+1BM1+MB1+MB1+1B=1+1BM1+MB1+MB1+1B
30 9 26 29 3eqtr2d M0B1+1BM+1=1+1BM1+MB1+MB1+1B
31 30 oveq1d M0B1+1BM+11+M+1B=1+1BM1+MB1+MB1+1B1+M+1B
32 22 6 rpmulcld M0B1+MB1+1B+
33 32 rpcnd M0B1+MB1+1B
34 nn0p1nn M0M+1
35 34 nnrpd M0M+1+
36 35 adantr M0BM+1+
37 3 adantl M0BB+
38 36 37 rpdivcld M0BM+1B+
39 2 38 rpaddcld M0B1+M+1B+
40 39 rpcnd M0B1+M+1B
41 39 rpne0d M0B1+M+1B0
42 28 33 40 41 divassd M0B1+1BM1+MB1+MB1+1B1+M+1B=1+1BM1+MB1+MB1+1B1+M+1B
43 31 42 eqtrd M0B1+1BM+11+M+1B=1+1BM1+MB1+MB1+1B1+M+1B