Metamath Proof Explorer


Theorem faclimlem3

Description: Lemma for faclim . Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion faclimlem3 M 0 B 1 + 1 B M + 1 1 + M + 1 B = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B 1 + M + 1 B

Proof

Step Hyp Ref Expression
1 1rp 1 +
2 1 a1i M 0 B 1 +
3 nnrp B B +
4 3 rpreccld B 1 B +
5 4 adantl M 0 B 1 B +
6 2 5 rpaddcld M 0 B 1 + 1 B +
7 6 rpcnd M 0 B 1 + 1 B
8 simpl M 0 B M 0
9 7 8 expp1d M 0 B 1 + 1 B M + 1 = 1 + 1 B M 1 + 1 B
10 1 a1i B 1 +
11 10 4 rpaddcld B 1 + 1 B +
12 nn0z M 0 M
13 rpexpcl 1 + 1 B + M 1 + 1 B M +
14 11 12 13 syl2anr M 0 B 1 + 1 B M +
15 14 rpcnd M 0 B 1 + 1 B M
16 1cnd M 0 B 1
17 nn0nndivcl M 0 B M B
18 17 recnd M 0 B M B
19 16 18 addcomd M 0 B 1 + M B = M B + 1
20 nn0ge0div M 0 B 0 M B
21 17 20 ge0p1rpd M 0 B M B + 1 +
22 19 21 eqeltrd M 0 B 1 + M B +
23 22 rpcnd M 0 B 1 + M B
24 22 rpne0d M 0 B 1 + M B 0
25 15 23 24 divcan1d M 0 B 1 + 1 B M 1 + M B 1 + M B = 1 + 1 B M
26 25 oveq1d M 0 B 1 + 1 B M 1 + M B 1 + M B 1 + 1 B = 1 + 1 B M 1 + 1 B
27 14 22 rpdivcld M 0 B 1 + 1 B M 1 + M B +
28 27 rpcnd M 0 B 1 + 1 B M 1 + M B
29 28 23 7 mulassd M 0 B 1 + 1 B M 1 + M B 1 + M B 1 + 1 B = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B
30 9 26 29 3eqtr2d M 0 B 1 + 1 B M + 1 = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B
31 30 oveq1d M 0 B 1 + 1 B M + 1 1 + M + 1 B = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B 1 + M + 1 B
32 22 6 rpmulcld M 0 B 1 + M B 1 + 1 B +
33 32 rpcnd M 0 B 1 + M B 1 + 1 B
34 nn0p1nn M 0 M + 1
35 34 nnrpd M 0 M + 1 +
36 35 adantr M 0 B M + 1 +
37 3 adantl M 0 B B +
38 36 37 rpdivcld M 0 B M + 1 B +
39 2 38 rpaddcld M 0 B 1 + M + 1 B +
40 39 rpcnd M 0 B 1 + M + 1 B
41 39 rpne0d M 0 B 1 + M + 1 B 0
42 28 33 40 41 divassd M 0 B 1 + 1 B M 1 + M B 1 + M B 1 + 1 B 1 + M + 1 B = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B 1 + M + 1 B
43 31 42 eqtrd M 0 B 1 + 1 B M + 1 1 + M + 1 B = 1 + 1 B M 1 + M B 1 + M B 1 + 1 B 1 + M + 1 B