Step |
Hyp |
Ref |
Expression |
1 |
|
1rp |
|
2 |
1
|
a1i |
|
3 |
|
nnrp |
|
4 |
3
|
rpreccld |
|
5 |
4
|
adantl |
|
6 |
2 5
|
rpaddcld |
|
7 |
6
|
rpcnd |
|
8 |
|
simpl |
|
9 |
7 8
|
expp1d |
|
10 |
1
|
a1i |
|
11 |
10 4
|
rpaddcld |
|
12 |
|
nn0z |
|
13 |
|
rpexpcl |
|
14 |
11 12 13
|
syl2anr |
|
15 |
14
|
rpcnd |
|
16 |
|
1cnd |
|
17 |
|
nn0nndivcl |
|
18 |
17
|
recnd |
|
19 |
16 18
|
addcomd |
|
20 |
|
nn0ge0div |
|
21 |
17 20
|
ge0p1rpd |
|
22 |
19 21
|
eqeltrd |
|
23 |
22
|
rpcnd |
|
24 |
22
|
rpne0d |
|
25 |
15 23 24
|
divcan1d |
|
26 |
25
|
oveq1d |
|
27 |
14 22
|
rpdivcld |
|
28 |
27
|
rpcnd |
|
29 |
28 23 7
|
mulassd |
|
30 |
9 26 29
|
3eqtr2d |
|
31 |
30
|
oveq1d |
|
32 |
22 6
|
rpmulcld |
|
33 |
32
|
rpcnd |
|
34 |
|
nn0p1nn |
|
35 |
34
|
nnrpd |
|
36 |
35
|
adantr |
|
37 |
3
|
adantl |
|
38 |
36 37
|
rpdivcld |
|
39 |
2 38
|
rpaddcld |
|
40 |
39
|
rpcnd |
|
41 |
39
|
rpne0d |
|
42 |
28 33 40 41
|
divassd |
|
43 |
31 42
|
eqtrd |
|