| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  1  ∈  ℝ+ ) | 
						
							| 3 |  | nnrp | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 | 3 | rpreccld | ⊢ ( 𝐵  ∈  ℕ  →  ( 1  /  𝐵 )  ∈  ℝ+ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  /  𝐵 )  ∈  ℝ+ ) | 
						
							| 6 | 2 5 | rpaddcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 1  /  𝐵 ) )  ∈  ℝ+ ) | 
						
							| 7 | 6 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 1  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 | 7 8 | expp1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ ( 𝑀  +  1 ) )  =  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) ) | 
						
							| 10 | 1 | a1i | ⊢ ( 𝐵  ∈  ℕ  →  1  ∈  ℝ+ ) | 
						
							| 11 | 10 4 | rpaddcld | ⊢ ( 𝐵  ∈  ℕ  →  ( 1  +  ( 1  /  𝐵 ) )  ∈  ℝ+ ) | 
						
							| 12 |  | nn0z | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℤ ) | 
						
							| 13 |  | rpexpcl | ⊢ ( ( ( 1  +  ( 1  /  𝐵 ) )  ∈  ℝ+  ∧  𝑀  ∈  ℤ )  →  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  ∈  ℝ+ ) | 
						
							| 14 | 11 12 13 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 16 |  | 1cnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 17 |  | nn0nndivcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 𝑀  /  𝐵 )  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 𝑀  /  𝐵 )  ∈  ℂ ) | 
						
							| 19 | 16 18 | addcomd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 𝑀  /  𝐵 ) )  =  ( ( 𝑀  /  𝐵 )  +  1 ) ) | 
						
							| 20 |  | nn0ge0div | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  0  ≤  ( 𝑀  /  𝐵 ) ) | 
						
							| 21 | 17 20 | ge0p1rpd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑀  /  𝐵 )  +  1 )  ∈  ℝ+ ) | 
						
							| 22 | 19 21 | eqeltrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 𝑀  /  𝐵 ) )  ∈  ℝ+ ) | 
						
							| 23 | 22 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 𝑀  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 24 | 22 | rpne0d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( 𝑀  /  𝐵 ) )  ≠  0 ) | 
						
							| 25 | 15 23 24 | divcan1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( 1  +  ( 𝑀  /  𝐵 ) ) )  =  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  =  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) ) | 
						
							| 27 | 14 22 | rpdivcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 29 | 28 23 7 | mulassd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  =  ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) ) ) | 
						
							| 30 | 9 26 29 | 3eqtr2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 1  /  𝐵 ) ) ↑ ( 𝑀  +  1 ) )  =  ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ ( 𝑀  +  1 ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) )  =  ( ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) ) ) | 
						
							| 32 | 22 6 | rpmulcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  ∈  ℝ+ ) | 
						
							| 33 | 32 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 34 |  | nn0p1nn | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 35 | 34 | nnrpd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℝ+ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 𝑀  +  1 )  ∈  ℝ+ ) | 
						
							| 37 | 3 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℝ+ ) | 
						
							| 38 | 36 37 | rpdivcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑀  +  1 )  /  𝐵 )  ∈  ℝ+ ) | 
						
							| 39 | 2 38 | rpaddcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) )  ∈  ℝ+ ) | 
						
							| 40 | 39 | rpcnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 41 | 39 | rpne0d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) )  ≠  0 ) | 
						
							| 42 | 28 33 40 41 | divassd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) )  =  ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) ) ) ) | 
						
							| 43 | 31 42 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ ( 𝑀  +  1 ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) )  =  ( ( ( ( 1  +  ( 1  /  𝐵 ) ) ↑ 𝑀 )  /  ( 1  +  ( 𝑀  /  𝐵 ) ) )  ·  ( ( ( 1  +  ( 𝑀  /  𝐵 ) )  ·  ( 1  +  ( 1  /  𝐵 ) ) )  /  ( 1  +  ( ( 𝑀  +  1 )  /  𝐵 ) ) ) ) ) |