Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
3 |
|
fin23lem.b |
|- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
4 |
|
fin23lem.c |
|- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
5 |
|
fin23lem.d |
|- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
6 |
|
fin23lem.e |
|- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
7 |
2
|
ssfin3ds |
|- ( ( G e. F /\ U. ran t C_ G ) -> U. ran t e. F ) |
8 |
1 2 3 4 5 6
|
fin23lem29 |
|- U. ran Z C_ U. ran t |
9 |
8
|
a1i |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z C_ U. ran t ) |
10 |
1 2
|
fin23lem21 |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U =/= (/) ) |
11 |
10
|
ancoms |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> |^| ran U =/= (/) ) |
12 |
|
n0 |
|- ( |^| ran U =/= (/) <-> E. a a e. |^| ran U ) |
13 |
11 12
|
sylib |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> E. a a e. |^| ran U ) |
14 |
1
|
fnseqom |
|- U Fn _om |
15 |
|
fndm |
|- ( U Fn _om -> dom U = _om ) |
16 |
14 15
|
ax-mp |
|- dom U = _om |
17 |
|
peano1 |
|- (/) e. _om |
18 |
17
|
ne0ii |
|- _om =/= (/) |
19 |
16 18
|
eqnetri |
|- dom U =/= (/) |
20 |
|
dm0rn0 |
|- ( dom U = (/) <-> ran U = (/) ) |
21 |
20
|
necon3bii |
|- ( dom U =/= (/) <-> ran U =/= (/) ) |
22 |
19 21
|
mpbi |
|- ran U =/= (/) |
23 |
|
intssuni |
|- ( ran U =/= (/) -> |^| ran U C_ U. ran U ) |
24 |
22 23
|
ax-mp |
|- |^| ran U C_ U. ran U |
25 |
1
|
fin23lem16 |
|- U. ran U = U. ran t |
26 |
24 25
|
sseqtri |
|- |^| ran U C_ U. ran t |
27 |
26
|
sseli |
|- ( a e. |^| ran U -> a e. U. ran t ) |
28 |
|
f1fun |
|- ( t : _om -1-1-> V -> Fun t ) |
29 |
28
|
adantr |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> Fun t ) |
30 |
1 2 3 4 5 6
|
fin23lem30 |
|- ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) |
31 |
29 30
|
syl |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( U. ran Z i^i |^| ran U ) = (/) ) |
32 |
|
disj |
|- ( ( U. ran Z i^i |^| ran U ) = (/) <-> A. a e. U. ran Z -. a e. |^| ran U ) |
33 |
31 32
|
sylib |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> A. a e. U. ran Z -. a e. |^| ran U ) |
34 |
|
rsp |
|- ( A. a e. U. ran Z -. a e. |^| ran U -> ( a e. U. ran Z -> -. a e. |^| ran U ) ) |
35 |
33 34
|
syl |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( a e. U. ran Z -> -. a e. |^| ran U ) ) |
36 |
35
|
con2d |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( a e. |^| ran U -> -. a e. U. ran Z ) ) |
37 |
36
|
imp |
|- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> -. a e. U. ran Z ) |
38 |
|
nelne1 |
|- ( ( a e. U. ran t /\ -. a e. U. ran Z ) -> U. ran t =/= U. ran Z ) |
39 |
27 37 38
|
syl2an2 |
|- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> U. ran t =/= U. ran Z ) |
40 |
39
|
necomd |
|- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> U. ran Z =/= U. ran t ) |
41 |
13 40
|
exlimddv |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z =/= U. ran t ) |
42 |
|
df-pss |
|- ( U. ran Z C. U. ran t <-> ( U. ran Z C_ U. ran t /\ U. ran Z =/= U. ran t ) ) |
43 |
9 41 42
|
sylanbrc |
|- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z C. U. ran t ) |
44 |
7 43
|
sylan2 |
|- ( ( t : _om -1-1-> V /\ ( G e. F /\ U. ran t C_ G ) ) -> U. ran Z C. U. ran t ) |
45 |
44
|
3impb |
|- ( ( t : _om -1-1-> V /\ G e. F /\ U. ran t C_ G ) -> U. ran Z C. U. ran t ) |