Step |
Hyp |
Ref |
Expression |
1 |
|
frege129d.f |
|- ( ph -> F e. _V ) |
2 |
|
frege129d.a |
|- ( ph -> A e. dom F ) |
3 |
|
frege129d.c |
|- ( ph -> C = ( F ` A ) ) |
4 |
|
frege129d.or |
|- ( ph -> ( A ( t+ ` F ) B \/ A = B \/ B ( t+ ` F ) A ) ) |
5 |
|
frege129d.fun |
|- ( ph -> Fun F ) |
6 |
1
|
adantr |
|- ( ( ph /\ A ( t+ ` F ) B ) -> F e. _V ) |
7 |
2
|
adantr |
|- ( ( ph /\ A ( t+ ` F ) B ) -> A e. dom F ) |
8 |
3
|
adantr |
|- ( ( ph /\ A ( t+ ` F ) B ) -> C = ( F ` A ) ) |
9 |
|
simpr |
|- ( ( ph /\ A ( t+ ` F ) B ) -> A ( t+ ` F ) B ) |
10 |
5
|
adantr |
|- ( ( ph /\ A ( t+ ` F ) B ) -> Fun F ) |
11 |
6 7 8 9 10
|
frege126d |
|- ( ( ph /\ A ( t+ ` F ) B ) -> ( C ( t+ ` F ) B \/ C = B \/ B ( t+ ` F ) C ) ) |
12 |
|
biid |
|- ( C ( t+ ` F ) B <-> C ( t+ ` F ) B ) |
13 |
|
eqcom |
|- ( C = B <-> B = C ) |
14 |
|
biid |
|- ( B ( t+ ` F ) C <-> B ( t+ ` F ) C ) |
15 |
12 13 14
|
3orbi123i |
|- ( ( C ( t+ ` F ) B \/ C = B \/ B ( t+ ` F ) C ) <-> ( C ( t+ ` F ) B \/ B = C \/ B ( t+ ` F ) C ) ) |
16 |
11 15
|
sylib |
|- ( ( ph /\ A ( t+ ` F ) B ) -> ( C ( t+ ` F ) B \/ B = C \/ B ( t+ ` F ) C ) ) |
17 |
|
3orcomb |
|- ( ( C ( t+ ` F ) B \/ B = C \/ B ( t+ ` F ) C ) <-> ( C ( t+ ` F ) B \/ B ( t+ ` F ) C \/ B = C ) ) |
18 |
|
3orrot |
|- ( ( C ( t+ ` F ) B \/ B ( t+ ` F ) C \/ B = C ) <-> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) |
19 |
17 18
|
sylbb |
|- ( ( C ( t+ ` F ) B \/ B = C \/ B ( t+ ` F ) C ) -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) |
20 |
16 19
|
syl |
|- ( ( ph /\ A ( t+ ` F ) B ) -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) |
21 |
20
|
ex |
|- ( ph -> ( A ( t+ ` F ) B -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) ) |
22 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
23 |
3
|
eqcomd |
|- ( ph -> ( F ` A ) = C ) |
24 |
|
funbrfvb |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) = C <-> A F C ) ) |
25 |
24
|
biimpd |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) = C -> A F C ) ) |
26 |
5 2 25
|
syl2anc |
|- ( ph -> ( ( F ` A ) = C -> A F C ) ) |
27 |
23 26
|
mpd |
|- ( ph -> A F C ) |
28 |
1 27
|
frege91d |
|- ( ph -> A ( t+ ` F ) C ) |
29 |
28
|
adantr |
|- ( ( ph /\ A = B ) -> A ( t+ ` F ) C ) |
30 |
22 29
|
eqbrtrrd |
|- ( ( ph /\ A = B ) -> B ( t+ ` F ) C ) |
31 |
30
|
ex |
|- ( ph -> ( A = B -> B ( t+ ` F ) C ) ) |
32 |
|
3mix1 |
|- ( B ( t+ ` F ) C -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) |
33 |
31 32
|
syl6 |
|- ( ph -> ( A = B -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) ) |
34 |
1
|
adantr |
|- ( ( ph /\ B ( t+ ` F ) A ) -> F e. _V ) |
35 |
|
funrel |
|- ( Fun F -> Rel F ) |
36 |
5 35
|
syl |
|- ( ph -> Rel F ) |
37 |
|
reltrclfv |
|- ( ( F e. _V /\ Rel F ) -> Rel ( t+ ` F ) ) |
38 |
1 36 37
|
syl2anc |
|- ( ph -> Rel ( t+ ` F ) ) |
39 |
|
brrelex1 |
|- ( ( Rel ( t+ ` F ) /\ B ( t+ ` F ) A ) -> B e. _V ) |
40 |
38 39
|
sylan |
|- ( ( ph /\ B ( t+ ` F ) A ) -> B e. _V ) |
41 |
|
fvex |
|- ( F ` A ) e. _V |
42 |
3 41
|
eqeltrdi |
|- ( ph -> C e. _V ) |
43 |
42
|
adantr |
|- ( ( ph /\ B ( t+ ` F ) A ) -> C e. _V ) |
44 |
2
|
elexd |
|- ( ph -> A e. _V ) |
45 |
44
|
adantr |
|- ( ( ph /\ B ( t+ ` F ) A ) -> A e. _V ) |
46 |
|
simpr |
|- ( ( ph /\ B ( t+ ` F ) A ) -> B ( t+ ` F ) A ) |
47 |
27
|
adantr |
|- ( ( ph /\ B ( t+ ` F ) A ) -> A F C ) |
48 |
34 40 43 45 46 47
|
frege96d |
|- ( ( ph /\ B ( t+ ` F ) A ) -> B ( t+ ` F ) C ) |
49 |
48
|
ex |
|- ( ph -> ( B ( t+ ` F ) A -> B ( t+ ` F ) C ) ) |
50 |
49 32
|
syl6 |
|- ( ph -> ( B ( t+ ` F ) A -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) ) |
51 |
21 33 50
|
3jaod |
|- ( ph -> ( ( A ( t+ ` F ) B \/ A = B \/ B ( t+ ` F ) A ) -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) ) |
52 |
4 51
|
mpd |
|- ( ph -> ( B ( t+ ` F ) C \/ B = C \/ C ( t+ ` F ) B ) ) |